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A Convergence Theorem Associated With a Pair of Second Order
Differential Equations
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Abstract: We consider the second order matrix differential equation

(M+2)®=0, 0<x<w.
Where M is a second-order matrix differential operator and @ is a vector having two components. In this
f,(x)
f,(x)
0< x <o and of bounded variation in 0 < x <o, when p(x) and q(x) tendto —o as x tendto +w.
Key Words: Matrix differential operator, convergence theorem, bounded variation.

paper we prove a convergence theorem for the vector function f(x):{ } which is continuous in

81. Let M denote the matrix operator

1.1)
r(x) T—Q(X)

and ® = d(x) a vector having two components U =U(X) and V =V(X) represented as a column matrix
u
o- { } .
v

(M+2)®=0, 0<x<oo. 1.2

where A is a parameter, real or complex.
We assume the following conditions to be satisfied:
(i) p(X),q(X) tendto —oo as X tend to +o0.

i) P (¥)<0,q(x)<0, p"(x)<0,q"(x) <0.
(iii) p'(x):<>[(p(x))°],0<c<g.

Consider the homogenous system

@ =< (aw)* ], 0<e <.
) r(x) is bounded or r(x)= {( p(x)d(x))’ } ,0<d< %.
(vi) ( p(X))% dx and T(q(x)); dx are divergent.

( p(X))% dx [J j(q(x))é dx is convergent as X —» 0.

0

(vii)

Ot——8 O——8

Following Bhagat [2], the bilinear concomitant [®8] of two vectors

4
Q:{%}andez[ 1}
D, 8,

[(DH] = ¢1"91 - §01'91' + ¢2I‘92 _(92‘92' .

is defined by
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If ® and ¢ are any two solutions of the system (1.2) for the same value of A, then [®4)] is a function of 4
alone. It is an integral function of A, real for real A4 (see Bhagat [1]).

Let ¢,(x2) =9, (o/xm){“jw/x:z)

v (O/X'ﬂ,):|’ (j =12) be the boundary condition vectors at x =0 by
j Ll

(0/x;4)=a;, u/(O/x;4)=-a; _
uJ(/x )=4, u,(/x )=-a } (i=12).
v;(0/x;4)=a;, V] (0/x;2)=-a;

!ﬂ’ -
so that the boundary conditions to be satisfied by any solution ¢(x, 1) = {UEX /lﬂ of (1.2) at x=0 are given by
v(X,

[o(x. ), (x, 2)]=0. (i=12) (1.3)

and
[(/’1 (02] =0 (1.4)
X (0/x;A4) . :
The vectors 8 (x,4) =4, (0/x;4)= v 0/x:2) | (k =1,2) which take real constant values (independent of
k 1

A)at X =0 are defined by the relations

(o) %]=6,.[9 %]=0 1<jk<2) (1.5)

82. Green Matrix:

: Ly Gu GZl -
The Green matrix G(X, y;A) = for the system (1.2) is given by

12 22

l//ll(x'/’i’) ‘/’n(xnﬂ) u1(y:ﬂ) Vl(y’ﬂ’)

G y ;2/ = ; Ol

100y A) L/m(x.z) wzz(x,z)}{uz(y,z) vz(y,ﬂ»)} ye[0x)
w6 d) D Trand) v

= ; ye(X,oo)
LA A (A wa(yA)

We shall use the notations and results of Bhagat [3] and Pandey and Kumar [6]. The method of
Titchmarsh [8] will be used to obtain the results analogous to [7].

S;(x,4)
T,(x,4)
satisfies the system of integral equations.

83. Let A;(x,4) ={ } (1=12). It can be verified following Titehmarsh [8,8 5.4] that A,(x, 1)

S;(%,4) = S;(0) cosw(x) + lSj' (0)sinw(x) — JX.[P(t)Sj (t, A) +R(OT; (&, D]sin (w(x) —W(t))dt
H 0

: (i=12) (3.2)
T,(6.4) =T, 0)cos2(x) + =T/ (©)sin 2(x) ~ [[QT, (t.2) + RO)S, (&, A]sin (2(x) - 2(1)

When A =z, then g 0

sj(x,z)z(/l—p(x))%uj(x.z), (i=12) (3.2)
T,008) = (2=00)#v, (x 2), (1=12) (33)
W(x) = :[(l— p(t))%dt (3.4)
z(x) = E(A - q(t))%dt (3.5)
Pog=3 LW 5 P9y (36)

(A=p()z (A= p(x))?
Q(X)=% 9" 5 > (q’(x))zg (3.7)

(2—q(): ¥ (2-q)
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r(x
R(x) = f ) T (3.8)
(A= p(x))s (A-a(x))*
We assume that p(x) and q(x) are bounded for all finite xand p(0) =q(0)=0. So for a fixed x and
large |4|, we have from (3.2) - (3.8)

5,0 =(2)+u,(0). (=12) (39)
T.0)=(4)v,0), (j=12) (3.10)
sj’(0)=(z)iuj’(0)+o(|z|ij, (i=12) (3.12)
Tj'(0)=(ﬂ,)éllvj'(0)+o(|ﬂ|i}, (1=12) (3.12)
W(x):/12+o(|/1|;J (3.13)
z(x)=ﬁ+{|z|iJ (3.14)
(A= pOOY: =(A)¢ +o[|z|iJ (3.15)
(A-q(9))s =(2)s +{|ﬂ|ij (3.16)
P(x) = o[lﬂlij (3.17)
Q(x) = o(wij (3.18)
R(X) = o[lilij (3.19)

Let u=s~+it, t>0. Therefore,
S (x,A)=H_ e~ .
T, (x z)—Hjl.e“*}’ H=te e
j\V AN =Ty

Therefore, from (3.1), we have
H(x,4) = {SJ (0) cos w(x) +£SJ’(O)sin w(x)]etx -
7]

—fe’t(X’Y)[P(y)Hjl(ylﬂH R(Y)H j, (y, A)]sin (w(x) —w(y))dy

; 1 (1=12)

H,(x,4) = {TJ (0)cosz(x) + =T, (0)sin z(x)]e1x -
Y7

(3.21)

= [ IQYH (v, 2)+ ROH (3, A)lsin (2(x) ~ 2(y) ) dy

Let

M = max[sj (0),T,(0), SJ—’(O),TJ.'(O)}} 02
N (y) = max[ [P(y)].|Q()[.|R(Y)|]
Now we have
|cos w(x)|, [sin w(x)| < e”
and for large || (3.23)
Isin z(x)|, |cos z(x)| < &*

Therefore, using (3.22) and (3.23), (3.21) gives
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Hy (% A),H (%, 2) <M [1+—J j{|Hjl(y ), |sz(y,/1)|} N (y)dy for large|Z|.

Therefore from Conte and Sangren Lemma of [14], we have

1 f .
[Hu (v ALH (v, A<M [nmj-exp{zj N(y)dy}, (i=12) (3.24)
0
Thus, we see that H, and H;, are bounded for all x and large |ﬂ| It follows from (3.20) that
S, (%, A).T,(x,4) =0(e"), (j=12) (3.25)

for all X and large 4.
From (3.1), using (3.25)
S,(x,4) =S, (0)<:osw(x)+o(etx 4] 2
, (1=12) (3.26)
T;(x,4) =T;(0)cosz(x) +o| e

( X |ﬂ,|
Using (3.2) and (3.3), we get from (3.26)
uj(x,/i)zuj(O)cosw(x)+o( |/1|
, (1=12) (3.27)
vj(x,/i)zvj(O)cosz(x)+o( e™ |A|

Also, we have from [5, Chap.3, 84], for large X.
e[ M} (1) +) |
(21— p(X))
e "M, (2)+o(1) ]
(2-q00):

u,(x,2) = , (i=12) (3.28)

v (X, A) = L (i=12) (3.29)

where

,1(/1)— /1“U i (0)- 5| T

! 1[u © _u, <0)p'(0)]+
g 424

+%Teiwm {P(t)(ﬁ, - p(t))% u;(t,2)+R(t)(4 —q(t))% v (t,/i)} dt

(3.30)
ML= Lm0 % [V 9 01 (0)}
24 424
+%Ie‘z<‘) {Q(t)(/l —q(t))% v (t, A)+R(t)(A- p(t))% u; (t, /1)} dt
(3.31)

under the condition im(w(x) Ll z(X)) =-(2).

84. In this section we obtain a solution of the system (1.2) which is small when imaginary part of A is
large and positive and X is large. To find such a solution we consider the system of integral equations
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I 1 P i —
_ Alw(x) i(w(x)-w(t))
X, (x,)=¢ _5!6 {POX;(t,4)+REO)Y;(t, 2)} dt—

—iTeW”‘W“’) {P(O)X;(t, 2)+R)Y;(t, A)} dt
2is,

L L (i=12) 4.1)
Y (x,2) = e - [ OHQY; (t, 4) +RE X (t, 4)] dt -

—l_Te‘(“*H“” {Q)Y;(t. A) + R X, (t, 1)} dt
21,

Exactly following Titchmarsh [8, §6.2] and using (vii) of §3 it can be verified that the solutions of the system of
integral equations (4.1) satisfying (1.2). Also we have

e—iw(x)

1-J)

e—iz(x)

a-J)

|X;(x,4)| <
, (1=12) (4.2)
¥, (x, 2)| <

where

J= max{ JIPWdy. [lR()[dy. [[R(y)]e™ P dy, | |R(y)|e‘”‘<“”'w<”>dy}
0 0 0 0

1
Considering (4.1) for a fixed 4 or A in the bounded part of the region J = o(|/1|2J<1, if || is sufficiently
large and noting that im(w(x) —z(x)) = o(1) , it can be shown following [8, §6.2] that
X, (x,2) =" Ly (D) +o(]

, (1=12 4.3
YJ-(X,&) :eiz(x)l:sz(/,L)+o(l):| (J ) ( )

where

L) =1= [ {P)X, (v, )+ R, (v, 2)} dy

L . (i=12) (4.4)
Y (6 2) =1= [ QMY (v, A+ R X, (v, 1)} dy
From (3.2), (3.3) and (3.4), we have
iw(x) °
. (x)= "L, (4) +1 M ]

e‘2<x(>;EE p((:;): ]| =12 9

v (x,4) = 12 -

(A-q(x)*

85. From (3.28) and (3,29) we see that ¢, (x,4),(j =1 2)are large when the imaginary part of w(x) and
z(x) are large and positive. Therefore ¢, (x,4),(j =1,2) are not L2 [0,oo). But from (4.5) we see that

u;(x,4) .
aj(x,w{v_(x ﬂ)} (i=12)

are small when the imaginary part of w(x) and z(x) are large and positive. Thus ¢,(x,4) and «;(x, 1),
(j =12) are linearly independent. Then

V0D =3 K (D, (02) + L (Do (x4, (r=12) (5.1)

Sincew, (x,4), (r=12) are L*[0,) but ¢,(x,4) are not L*[0,0), therefore L (1)=0, (1<r,s<2).Hence
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w, (X, A) :iKm (Ve (%, 1), (r=12) (5.2)
From asymptotic forsr;lulae (3.28), (3.29) and (4.3) we have, as X tend to infinity

uj' (%, A) 0 =i(A- p(x))% e "M (1)

v/ (x, )0 —i(A- q(x))% e "M, ()

) L (i=12) (5.3)
uj' (%, A) 0 =i(A-p(x))s e"PL, (1)

v/ (x, )0 —i(A- q(x))% e "ML, (1)

where dashes denote differentiation with respect to X . Using (3.28), (3.29), (4.5), (5.2) and (5.3) we obtain from
(1.5)

K (ﬂ): M21L21+M22Lzz
11 -
2'(M11M22_M12M21)(L12L21_L11L22)
K (/1): M21L11+M22L12
12 .
2|(M11M22_M12M21)(|-12L21_|-11L22)
K (A): M11L21+M12L22
21 .
2'(M11M22_M12M21)(L12L21_L11L22)
K (/1): M11L11+M12L12
22 .
2'(M11M22_M12M21)(L12L21_L11L22)
86. Convergence Theorem:
f, (x
If f(x):{ ()
f,(x)
that the integrals

(5.4)

} be a real valued continuous vector of bounded variation in 0 < x <00, and L*[0,0) and is such

[ POOfiax 5 [p(0 (9 (6.1)
0 0
are uniformly convergent for large |ﬂ| , then
R+ie
F(x) =~ lim [ o(x.A)dA (6.2)
7l R—w

—R+ie

uniformly for 0<e&<1 ,where

A [
m xq =00 )= [0y A f(dy "

We prove convergence theorem for ¢, (x, 1) because similar result holds for ¢,(x,4).
Now we write ¢, (x,4) as

A% 2) = iy (%, z)}aﬁ (y.2)t (y)dywﬂ(x,miq); (. 2)F (Dely+
+u1(x,z)1°w (v, 2)f (y)dy+u2(x,z)Iw; (%, 2)f (N,

a(x.2) =wn(x,A)Eul(y.A)fl(y)dy+u1(x,z)Iwn(y.z)fl(y)dy+w21(x, ﬂ)iuz(y,ﬂ)fl(y)dw
+u2(x,A)Iwm(y,ﬂ)fl(y)dywu(x,z)ivl(y,z)fz(y)dywzl(x,z)ivz (v 2)f,(y)dy +
+u1(x,i)Iwu (y,l)fz(y)dwuz(x,z)jwzz (v, 1) ()dy.

=A+B+C+D+E+F (6.4)
where
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A= 06 DU (¥ 2) (D + (%) [, (v, 2) ()l

B =5, (% AU, (¥, )T, (y)dy+u, (%, ) [, (v, A)Fy(y)dy

C=wy,(x ﬂ’).[vl ( Y, j~)f2 (y)dy

D =y, (6 A) [V, (¥, )T, (y)dy
E = (6 A) v, (v, 4)F, (V)dy

F =u,062) [, (¥, 4) T, (y)dy.
We evaluate A, the other term can be evaluated in the same way. Now

A= (D) (¥, 2) (DY +1, (%) [, (v, 2) ()l

X X+8

p )] [+ [ w(v.2) fl(y)dy}ul(x,z)ﬁ [ v (v.2) fl(y>dy}

=A+A+A+A, sy
For J <1, if |4| is sufficiently large, we have from (5.2) and (5.4)

M., (4)|[e"™"
lya(x, 2)] < M=) T
2{|M11(/1)M22(l)_ Mlz (A)Mn(l)mﬁ_ p(x)|4 (6 5)
) M ()] ™) 1200 }i |
1
- A
2{|M11(2)M22(l)—Mlz(ﬂ)Mﬂ(l)”ﬂ,“
Therefore, using (3.2), (3.25) and (6.5), we have
e Ty
A =0 [ e[f,(y)|dy
|ﬂ|§ X+6
For afixed y, p(y) is less than |/1|.Therefore, using (6.1), we have
e—tﬁ
A =0]-— (6.6)
|4]2

The integral of (6.6) round the semicircle tends to zeroas R tends to infinity for any fixed 5 > 0. A similar
argument holds for A also. Now, we consider A, . For fixed X or in a finite interval, from (4.1), we have

. 1Xiwx—w lwiw —w(x
[X; (. 2) =€ = |- [P X (39, 2) + ROIY, (1, Ay + 2 [ P(Y) X (v, 1) + RO, (v, D) dy
0 X

—im(w(x))
<E ()
<q-e ™M) (j=12) (say) (6.7)
Similarly,
¥, (x| <a-e™™M) (j=12) (say) (6.8)

Also from (4.4), we have
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Lu(2) =1+{|4|§j

l L
L) :1+o[|1|-zj
Similarly from (3.30) and (3.31), we have
1 1
M, (2) =514u,-(0)+{|ﬂ|4J

(i=12) (6.9)

N (j=12) (6.10)
M, () = : ﬂ“v i(0) +O(W j
Therefore, by using (6.9), (4.3) can be written as
X;(x,A) =e"® {1+ o(|ﬂ|_; ﬂ

. (1=12) (6.11)

Y, (x,4) =€ {1+ o[wiﬂ

Now using (4.5), (6.10) and (6.11), (5.2) and (5.4) give
10 1e<() |
yu(X,4) = T 1
i [v,(0)u,(0) —u, (O)v, (0)] (2 - p(x))?

VZ(O).eiw(x) |:l+0(|/1|)_;:| 1
=— (1— p(x)j ) (6.12)
i22 [v,(0)u, (0) —u, (O)v, (0)] A
Thus from the first result of (3.27) and (6.12), we get
— (O)v, (0) cosw(x) Te‘w(” f,(y) (1_#]“ dy +
i[22 [v, (0)u, (0) ~ 1, (O}, (0)]

ftx x+5 —%
{e J‘ eflm w(y)) f(y)( MJ dy} (613)

A, =

[t x+6

_ 1ul(O)vz(O)cosw(x) Xreiwm fl(y)dy+o{e J'Ve—im(wm) fl(y)dy}Jr
47 [v, 00, 0) -, (O)v, 0)] A
+0{— j e """ p(y) f,(y)dy (6.14)
e
The last two terms of Ajare
{I il [ f(y)dy}and o W [ tpmay!. (6.15)
Az x

X+0 X+8
The integral of these round the semicircle are O{I f(y)dy} and 04— j f(y)p(y)dy  respectively. These
e
integrals can be made as small as we please by properly choosing ¢ and using (6.1). The first term in A, can
be written as
u, (0)v, (0)[ &™) 4™ | x5
1(3 0 ] [ ", (y)dy (6.16)
2i[Af2 [v, (O)u, (0) ~u, (v, (0)] *

X
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Using (3.13), we have from (6.13), the first term of A, is

Ul(O)Vz (0) I:eill(x) +e*i#(x)j| X+8 )
T CIOEOCIE R

The term involving e also gives a zero limit. The other term is the same as in the case of an ordinary

Fourier series, and similarly for A,. Hence we conclude that in the case of continuous function of bounded

variation
im T A.da—_ AUV, 0)f(x)
e v, (0)u, (0) -, (0, (0)
Similarly
im T B.di— %@, 0)f,(x)
e v, (0)u, (0) - 4, (O)v, (0)
im T c.diet 7V0uOfx)
R G 2,(0)u, (0) -4, (O)v, (0)
P R .\ A OIA LAY
R R 2,(0)u,(0) -, (), (0)
lim f Egie 1 7u0u,©)f ()
e 2,(0)u, (0) -, (O)v, (0)
P I T OLAE)
R G 2,(0)u,(0) -, (O)v, (0)
Thus we have _
fl(x)=—i_|im j @, (x, 2)d A (6.17)
7Tl R —R+ie
Similarly »
f,(x) ——Lim j @,(x, 1)1 (6.18)
7Tl R —R+ie

The above results are true, uniformly for 0 <& <1.
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