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Abstract: In this paper spaces of entire function represented by Dirichlet Series   have been considered. A 

norm has been introduced and a metric has been defined. Properties of this space and a characterization of                   

continuous linear functionals have been established.  

 

1.    Let,  

 

(1.1)   f(s) =  n . e 
s.λ

n . 

 

 where 0 < λ1 < λ2 < ……… < λn ..……, λn → ∞ as n → ∞, s = σ + it (σ, t being    reals) and {an}1
∞
 any sequence 

of complex numbers, be a Dirichlet Series. Further, Let -: 

 

(1.2)   n/λn = D < ∞ .  

 

(1.3)   (λn+1 – λn). 

   and 

(1.4)   ӏanӏ
-1

 

          λn 

Then the series in (1.1) represents an entire function  f(s). We donate by X the set of all entire functions f(s) 
having representation (1.1) and satisfying the conditions (1.2)-(1.4). By giving different topologies on the set X, 

Kamthan[4] and Hussain and Kamthan [2] have studied various topological properties of these spaces. Hence 

we define, for any non- decreasing sequence {ri} of positive numbers, ri → ∞,  

 

(1.5) ӏӏ f ӏӏ ri = Σ ӏanӏ e
r
i
λ
n, i=1, 2, 3 .......... where f ϵ X. Then from (1.4), ӏӏ f ӏӏri exists   for each i and is a form 

of X. Further, ӏӏ f ӏӏ ri ≤ ӏӏ f ӏӏ ri+1. With these countable numbers of norms, a metric d is defined on X as :  

  

(1.6) d (f, g) =  i   ӏӏ f-g ӏӏ ri   

                  1 + ӏӏ f-g ӏӏ ri 
 Further, following functions are defined for each f ϵ X, namely  
 

(1.7) p (f) =  ӏ an ӏ 
1/λ

n. 

 

(1.8)  ӏӏ f ӏӏ ri =   ӏ an ӏ 
1/λ

n.  

 

Then p (f) and ӏӏ f ӏӏi are para-norms on X. Let  

 

(1.9)  s (f, g) = i  ӏӏ f-g ӏӏ ri    , f, g ϵ X. 

                                                1+ӏӏ f-g ӏӏ ri 
 

It was shown [2, Lemma 1] that the three topologies induced by d, s and p on X are equivalent. Many other 

properties of these spaces were also obtained (see [2], pp. 206-209).  

For the space of entire functions of finite Ritt order [6] and type, yet another norm ӏӏ f ӏӏ q and hence metric λ 

was introduced and the properties of this space Xλ were studied. 
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Let, for f ϵ X,  

M (σ, t)  M (σ) =   sup      ӏ fμ (σ + it) ӏ 

     -∞ < t <∞ 

Then M (σ) is called the maximum modulus of f(s). The Ritt order of f(s) is defined as 
 

(1.10)  = ρ, 0 ≤ ρ ≤ ∞. 

                                  σ 

For f < ∞, the entire function f is said to be of finite order. A function f(σ) is said to be proximate order [3] if 

 

(1.11) ρ (σ) → ρ as σ → ∞, 0 < ρ < ∞,    

 

(1.12) σ ρ’ (σ) → 0 as σ → ∞.  
 
For f ϵ X, define  

 

(1.13)   ≤ A < ∞.  

                             

 

Then it was proved [3] that (1.13) holds if and only if  

 

(1.14)  n) ӏanӏ
1/λn 

< (A.e ρ)
1/ρ, where (t) is the unique solution of the equation t = exp 

[ ]. 

  

(Apparently the inequality (4.1) and the definition of (t) contain some misprints in [2, pp.209-210]). 

For each f ϵ X, define  

 

ӏӏ f ӏӏ q = n n)          ,  

    [(A+1/q)e]
1/ρ 

 

Where q = 1, 2, 3............ . For q1 ≤ q2, ӏӏ f ӏӏq1 ≤ ӏӏ f ӏӏq2. It was proved that ӏӏ f ӏӏq, q = 1, 2, 3............. Induces on 

X a unique topology such that X becomes a convex topological vector space, where this topology is given by the 

metric λ,  

this space was donated by Xλ. Various properties of this space were studied [2, pp. 209-216]. 

 

It is evident that if ρ = 0, then the definition of the norm ӏӏ f ӏӏ q and proximate order ρ (σ) is not possible. It is 

the aim of this paper to give a metric on the space of entire functions of zero order thereby studying some 

properties of this space. 
 

2.     For an entire function f(s) represented by (1.1), for which ρ defined by (1.10) is equal to zero, we define 

following Rahman [5]. 

 

(2.1)  = ρ*, 1 ≤ ρ* ≤ ∞. 

                               log σ 

Then ρ* is said to be the logarithmic order of f(s). For 1 < ρ* < ∞, we define the logarithmic proximate order [1] 

ρ*(σ) as a continuous piecewise differentiable function for σ > σ0 such that 

 

(2.2) ρ*(σ) → ρ*
 
as σ → ∞, 

(2.3) σ.log σ. ρ*(σ) → 0 as σ → ∞.  

 

Then the logarithmic type T* of {f} with respect to proximate order ρ*( σ) is defined as [7]:      

 

(2.4)  = T*, 0 < T* < ∞. 

                           σρ*(σ) 
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It was proved by one of the authors [7] that f(s) is of logarithmic order ρ*,  

1 < ρ* < ∞ and logarithmic type T*, 0 < T* < ∞ if and only if  

 

(2.5) n)    =     ρ*     (ρ*T*)
 1/(ρ*-1)

,  

                           log ӏanӏ
-1         

ρ*-1 

 

where (t) is the unique solution of the equation t = σρ*(σ)-1. We now denote by X the set of all entire functions 

f(s) given by (1.1), satisfying (1.2) to (1.4), for which 

 

(2.6)  ≤ T* < ∞, 1 < ρ* < ∞. 

                           σρ*(σ) 

 
Then from (2.5), we have 

 

(2.7) n n)  ≤     ρ*   (ρ*T*)
 1/(ρ*-1)

. 

                            log ӏanӏ
-1      

ρ*-1 

 

In all our further discussion, we shall denote (ρ*/ ρ*-1)
(
 
ρ*-1)

 by the constant K. Then from (2.7) we have  

 

(2.8) ӏanӏ < exp [  –        λn. (λn)            ], 

      {K.ρ*(T*+ϵ)}
1/(ρ*-1) 

 

Where ϵ > 0 is arbitrary and n > n0. Now for each f ϵ X, let us define 

 

ӏӏ f ӏӏ q = ӏ an ӏ) exp [     –    λn. (λn)            ], 

                                 {Kρ*(T*+1/q)}
1/(ρ*-1) 

 

Where q = 1, 2, 3, .............. . In view of (2.8), ӏӏ f ӏӏ q exists and for q1 ≤ q2, 

ӏӏ f ӏӏ q1 ≤ ӏӏ f ӏӏ q2. This norm induces a metric topology on X. 

 

We define  

 λ(f, g) = 
q  

 ӏӏ f-g ӏӏ q   . 

                                    1 + ӏӏ f-g ӏӏ q    
 

The space X with the above metric λ will be donated by Xλ. Now we prove 
 

Theorem 1 –: The space Xλ is a  Fre’chet space. 

Proof –: It is sufficient to show that Xλ is complete. Hence, let { fα } be a λ-Cauchy sequence in X. Therefore, 

for any given ϵ > 0 there exists n0 = n0(ϵ) such that –: 

       ӏӏ fα - fβ ӏӏ q < ϵ V α, β > n0, q ≥ 1. 

 

Denoting fα(s) = n(α) e
s.λn

, fβ(s) = n(β) e
s.λn

, we have therefore  

 

(2.9)  ӏ an(α) – an(β) ӏ ). exp [          λn. (λn)            ] < ϵ 

                                    {Kρ*(T*+1/q)}
1/(ρ*-1) 

  

For α, β > n0 , q ≥ 1. Hence we obviously have  
 

ӏ an(α) – an(β) ӏ < ϵ v α, β > n0 , i.e. { an(α) } is a Cauchy sequence of  

 

Complex Numbers for each fixed n = 1, 2, 3 ........... . 

 

Now letting β → ∞ in (2.9), we have for α > n0 ,  
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(2.10) ӏ an(α) – an ӏ ). exp [     –    λn. (λn)            ] < ϵ. 

                                   {Kρ*(T*+1/q)}
1/(ρ*-1) 

 

Taking α = n0 , we get for a fixed q, 

 

ӏ an ӏ.exp [         λn. (λn)           ]   ≤  ӏ an
(n

0
)
 ӏ.exp [        λn. (λn)         ] + ϵ. 

           {Kρ*(T*+1/q)}
1/(ρ*-1)                                        

{Kρ*(T*+1/q)}
1/(ρ*-1) 

 

         Now, f(n
0

)
 = n

(n
0

)
 . e 

s.λ
n ϵ Xα , hence the condition (2.8) is satisfied. For  

 

arbitrary p > q, we have  

 

ӏ an
(n

0
)
 ӏ < exp [    –   λn. (λn)         ] for arbitrarily large n.   

        {Kρ*(T*+1/p)}
1/(ρ*-1)                          

Hence we have  

 

ӏ an ӏexp[    – λn. (λn)          ] < exp[ – λn. (λn)            1                  –          1                    ] + ϵ 

           {Kρ*(T*+1/q)}
1/(ρ*-1)              {Kρ}

1/(ρ*-1)  
(T*+1/q)}

1/(ρ*-1)    
(T*+1/p)}

1/(ρ*-1)   

 

Since ϵ > 0 is arbitrary and the first term on the R.H.S. → 0 as n → ∞, we find that the sequence {an} satisfies 

(2.8). Then f(s) = n esλ
n belongs to Xλ. 

 
Now, from (2.10), we have for q = 1, 2, 3 ........... , ӏӏ fα - f ӏӏ q < ϵ. Hence,  

 

λ (fα , f) = q  
 ӏӏ fα-f ӏӏ q    ≤      ϵ       

q  
 =     ϵ       <  ϵ. 

                                    1 + ӏӏ fα-f ӏӏ q     (1 + ϵ)                           (1 + ϵ) 

 

Since the above inequality holds for all α > n0 , we finally get fα→f where f ϵ Xλ. Hence Xλ is complete. This 

proves theorem 1.  

 

Theorem 2 –: A continuous linear functional ψ on Xλ is of the form  

 

                         ψ (f) = ncn if and only if  

 

 (2.11)  ӏ cn ӏ ≤ A. exp [        λn. (λn)           ]  

                  {Kρ*(T*+1/q)}
1/(ρ*-1) 

 

For all n ≥ 1, q ≥ 1, where A is a finite, positive number, f = f(s) = n . e 
s.λ

n and λ1 is sufficiently large. 

 

Proof –: Let ψ ϵ X’λ. Then for any sequence { fm } ϵ Xλ such that fm → f, we have ψ( fm) → ψ( f ) as m → ∞. 

Now let –: 

 

                     f(s) = n . e 
s.λ

n ,  

   

  where a’ns satisfy (2.8). Then f ϵ Xλ. Also, let 

   

      fm(s) = n . e 
s.λ

n 

  

  Then fm ϵ Xλ for m = 1, 2, 3 .......... . Let q be any fixed positive integer and let 0 < ϵ < 1/q. 
From (2.8), we can find an integer m such that  

    

    ӏ an ӏ < exp [       – λn. (λn)          ] , n > m   

                     {Kρ*(T*+ϵ)}
1/(ρ*-1) 
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Then,  

ӏӏ f – n . e 
s.λ

n ӏӏq  =  ӏӏ n . e 
s.λ

n ӏӏq  

                    

                 =  ӏ an ӏ) exp [      λn. (λn)       ]  

                                                                             {Kρ*(T*+1/q)}
1/(ρ*-1) 

<  exp [  λn. (λn)   ]           1                  –          1                    

         {Kρ*}
1/(ρ*-1)  

(T*+1/q)}
1/(ρ*-1)     

(T*+1/p)}
1/(ρ*-1) 

 < ϵ for sufficiently large values of m. 

 

Hence, λ( f, fm) = 
q  

 ӏӏ f-fm ӏӏ q     ≤        ϵ       <  ϵ.  

1 + ӏӏ f-fm ӏӏ q       (1 + ϵ)     

 

i.e. fm → f as m → ∞ in Xλ. Hence by assumption that ψ ϵ X’λ , we have  

 

   m) = ψ(f). 

 
Let us donate by Cn = ψ(e

s.λ
n). Then   

 

   ψ(fm) = an ψ(e
s.λ

n) =  an Cn 

 

Also ӏ Cn ӏ = ӏ ψ(e
s.λ

n) ӏ. Since ψ is continuous on Xλ , it is continuous on ӏӏ X ӏӏq for each q = 1, 2, 3 ............... . 

Hence there exists a positive constant A independent of  q such that 

 

    ӏ ψ(e
s.λ

n) ӏ = ӏ Cn ӏ ≤ A ӏӏ α ӏӏq , q ≥ 1,  

 
where α(s) = es.λn . Now using the definition of the norm for α(s), we get  

 

ӏ Cn ӏ ≤ A.exp [         λn. (λn)           ] , n ≥ 1, q ≥ 1.  

    {Kρ*(T*+1/q)}
1/(ρ*-1)

  

 

Hence we get ψ(f) =  an Cn , where C’ns satisfy (2.11).  

 

Conversely, suppose that ψ(f) = anCn  and Cn satisfies (2.11). Then for q ≥ 1,  

 

      ӏ ψ(f) ӏ  ≤  A . ӏ an ӏ) exp [          λn. (λn)            ] , 

                                                  {Kρ*(T*+1/q)}
1/(ρ*-1) 

i.e. ӏ ψ(f) ӏ ≤ A. ӏӏ f ӏӏ q , q ≥ 1 , 

 

i.e. ψ ϵ ӏӏ X’ ӏӏq , q ≥ 1. Now, since 

 

   λ(f, g) =  
q   

 ӏӏ f-fm ӏӏ q    ,   

         1 + ӏӏ f-fm ӏӏ q    

 

therefore X’λ =  ӏӏ X’ ӏӏq. Hence ψ ϵ  X’λ. 

 

This completes the proof of Theorem 2. Lastly, we give the construction of total sets in Xλ. Following [2], we 

give –: 

 

Definition –: Let X be a locally convex topological vector space A set E  X is          said to be total if and 

only if for any ψ ϵ X’ with ψ(E) = 0, we have ψ = 0. 

  Now, we prove  

Theorem 3 –: Consider the space Xλ defined before and let f(s) = n (e
s.λ

n), 
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  an  0 for n = 1, 2, 3 ............ , f ϵ Xλ. Suppose G is a subset of the complex plane having at 

least one limit point in the complex plane. Define, for μ ϵ G, fμ (s) =  n e
μ.λ

n).(e
s.λ

n). Then E = { fμ ; μ ϵ 

G } is total in Xλ . 

 

Proof –: Since f ϵ Xλ , from (2.7) we have 

 

    

           λn. (λn)          =                (λn) 

       log ӏ an.e
μ.λ

n ӏ 
-1

                                log ӏ an ӏ
 -1/λ

n – R(μ)           

 

         ≤     ρ*   (ρ*T*)
1/(ρ*-1)

 , since R(μ) < ∞. 

                                          ρ* - 1 

    

   Hence, if we donate by Mμ(σ) =      sup      ӏ fμ (σ + it) ӏ , then from (2.6),  

        -∞ < t <∞ 

    

      log Mμ (σ)   ≤  T* < ∞. 

           P*(σ) 

 

Therefore, fμ ϵ Xλ for each μ ϵ G. Thus E  Xλ . Now, let ψ be a  linear continuous functional on Xλ and 

suppose that ψ(fμ) = 0. From Theorem 2, there exists a sequence {Cn} of complex numbers such that  

 

    ψ(g) = bn Cn , g(s) = bn e
s.λ

n ϵ Xλ ,  

    

   where  

 

(2.12) ӏ Cnӏ < A.exp [          λn. (λn)            ] , n ≥ 1, q ≥ 1,  

        {Kρ*(T*+1/q)}
1/(ρ*-1)

  

    

   A being a constant and λ1 is sufficiently large. 

   Hence, 

 

    ψ( fμ ) an Cn e
μλ

n = 0 , μ ϵ G. 

 

References 
[1]. K.N. Awasthi : A study in the mean values and the growth of entire functions, Ph.D. Thesis, Kanpur University, 1969. 

[2]. T. Hussain and P.K. Kamthan: Spaces of Entire functions represented by Dirichlet  Series. Collect. Math., 19(3), 1968,203-216. 

[3]. P.K. Kamthan: Proximate order (R) of Entire functions represented by Dirichlet  Series. Collect. Math.,14(3), (1962),275-278. 

[4]. P.K. Kamthan: FK –spaces for entire Dirichlet functions. Collect.Math., 20(1969), 271-280. 

[5]. Q.I. Rahman : On the maximum modulus and the coefficients of a Dirichlet  Series. Quart. J. Math. (2), 7(1956),96-99. 

[6]. J.F.Ritt: On certain points in the theory of Dirichlet  Series. Amer. J. Maths., 50(1928), 73-86. 

[7]. G.S. Srivastava: A note on proximate order of entire functions represented by Dirichlet  Series. Bull De L’ Academie polonaise Des     

Sci 19(3)(1971),199-202. 


