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I. Introduction 
 The study of Common Fixed Point of mapping  satisfying contraction type condition has been a very 

active field of research activity  during the last  three decades. The concept of common fixed point theorem for 

commuting mappings was given by  Jungck [6], which generalizes the Banach’s [1] Fixed Point Theorem. The 

result Was generalized and extended in various ways by Iseki and singh [5],Park [12],Das And Naik [2],Singh 

[15]Singh and Singh [16],Fisher [3],Park and Bae [13]. Recently ,some Common Fixed Point Theorems of three 

and four commuting mappings were proved by Fisher [3],Khan and Imdad [10], Kang  and kim [9],and Lohani 

and Badshah [11]. 

 The concept of generalizion of commutability is given by Seesa[14], which is called weak 

commutability , which generalizes  the result of Das and Naik [2],More generalized commutability was 

introduced by Jungck [7],which is called compatibility .The utility of compatibility was initially demonstrated in 

extending a theorem of Park and Bae [13 ] in the concept of Fixed Point Theory. In general, commuting 
mappings are weakly commuting and weakly commuting mapping are compatible, but the converse are not 

necessarily true. The purpose of this paper is to generalize a common Fixed Point Theorem, which extend the 

result of Fisher[4], Jungck [8] , and Lohani and Badshah [11] by using a functional inequality and compatible 

mappings instead of commuting mappings. To illustrate our main theorem, 

 

II. Preliminaries 
DEFINITIONS 2.1: - If S and T are mappings from a metric space (X ,d) into itself ,are called 

(i) Commuting on X if 

                d(STx , TSx) = 0  for all x in X    . 
(ii)  Weakly commuting on X , if 

                 d(STx,TSx) ≤ d(Sx,Tx) for all x in X . Commuting mappings are weakly commuting, but he converse 

is not necessarily true. 

DEFINITION 2.2:-If S and T are mapping from a metric space (X  ,d) into itself ,are called compatible on X .if 

limSxm   =   limTxm =x for some point x in X . 

m→∞        m→∞ 

clearly , S and T are compatible mappings on X ,then d (STx ,TSx)  =  0  when d (Sx,Tx)  =  0 for some x in X. 

Weakly commuting mappings are compatible; the converse is not necessarily true: 

Lemma 2.1[7]:- Let S and T be compatible mappings from a Metric space (X, d) into itself. Suppose that 

                                    lim Sxm   =   lim Txm = x  for some point x in X . 

                                     m→∞         m→∞ 
Then   lim  Txm   = S x  ,  if S is continuous  m→∞ 

            m→∞ 

Now Let P , Q , S and T are mappings  from a complete Metric space (X ,d) into itself satisfying the condition 

                             S(X) ⊂ Q(X)  ,  T(X) ⊂  P(X)                                                 ……………  (A) 

d(S x ,Ty)     ≤     α  { [d(Px ,Sx) ]3 + [d(Qy ,Ty)]3/  [d(Px ,Sx)]2 +[d(Qy ,Ty)]2  }     +   β d(Px,Qy ) ………  (B) 

 

For all x ,y ∈ X ,where α, β ≥ 0 and α +β< 1 .Then for an arbitrary point x0 ∈ X ,  by (A) we choose a point x1 in 

X such that 

Qx1 = Sx0 and for this point x1 , there exist a point x2 in X such that 

Px2  =  Tx1 and so on.  Proceeding in the similar manner  , we can define a sequence {ym} in X such that 

Y2m+1  =  Q x2m+1  =  Sx2m 
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And 

Y2m  =  Px2m  =  Tx2m-1      ………………(C) 
 

Lemma 2.2[8] :- Let P, Q, S , and T be mappings  from a Metric Space (X ,d)  into itself satisfying the 

conditions  (A) and (B) . then  the  sequence { ym} defined by (C) is a Cauchy sequence . 

 

Our aim of this paper to prove the following theorem:- 

 

III. Main  Result 
Theorem: - Let   P, Q, S and T be mapping s from a complete  Metric Space (X ,d) into itself                       

             satisfying the conditions 

(i)  P(X)   ⊂  T(X)  ,  Q(X) ⊂   S(X) 

(ii) [d(Px , Qy)]2  ≤   a [d(Px  ,Sx)d(Qy,Ty)+d(Qy, Sx)d(Px ,Ty)]   + 

b[d(Px ,Sx)d(Px ,Ty)+d(Qy ,Ty)d(Qy ,Sx)] 

where 0 ≤ a+2b < 1  ; a ,b  ≥ 0 

 

(a)  One of P, Q, S and T is continuous . 

(b) P, S and Q ,T are compatible on X. 

Then P, Q, S and T have a unique common fixed point in X. 

PROOF :-        Let {yn} is Cauchy sequence and since X is complete so there exist a point z ε X 

                         such  that   lim yn = z  as n→∞ .  

 consequently  sequences Px2n ,Sx2n , Qx2n-1 and Tx2n+1 converges to z. 

Let S be continuous . Since P and S are compatible on X. we have  s2x2n → Sz and PSx2n →Sz  as n→∞, 

[d(Px ,Qy)]2  ≤   a [d(Px,Sx)d(Qy,Ty)+d(Qy,Sx)d(Px,Ty)] +b[d(Px,Sx)d(Px,Ty)+d(Qy,Ty)d(Qy,Sx)] 

we have 

[d(PSx2n,Qx2n-1)]
2         ≤        a[d(PSx2n ,s

2x2n)d(Qx2n-1,Tx2n-1) + d(Qx2n-1 ,S
2x2n)d(PSx2n-1,Tx2n-1)]  + 

                               b[d(PSx2n,S
2x2n)d(PSx2n,Tx2n-1) + d(Qx2n-1,Tx2n-1)d(Qx2n-1,s

2x2n)] 

as n→∞ 

we have   [d(Sz, z)]2  ≤  a[d(Sz,z)] 2 

Which is a contradiction  . 
Hence   Sz   =  z 

Now 

[d(Pz,Qx2n-1)]
 2  ≤  a[d (Pz ,Sz)d(Qx2n-1,Tx2n-1) + d(Qx2n-1,Sz)d(Pz,Tx2n-1)] + 

                b[d(Pz ,Sz)d(Pz ,Tx2n-1)  +d(Qx2n-1,Tx2n-1)d(Qx2n-1,Sz)] 

Letting  n→∞ , we have 

[d(Pz ,z)]2       ≤    a[d(Pz,z) d(z,z) +d(z,Sz) d(Pz,z)]+ b[d(Pz,z)d(Pz,z) +d(z,z)d(z,z)] 

                        ≤    a[d(Pz,z) d(z ,z) +d( z,z)d(P z,z)]+ b[d(Pz ,z)d(Pz,z) +d(z,z)d(z,z)] 

                        ≤    a[d(Pz,z) 0 + 0 d(Pz ,z)] + b[d(Pz,z)]2    + 0 ] 

                       ≤     a[ 0 + 0] + b [ d(Pz,z)]
2
 

[d(Pz ,z)]2       ≤     b [d(Pz ,z)]2 

Which is a contradiction 

Hence    Pz  =  z 

Now since  Pz  = z by condition (i) z ε T(X). 

Also T is self map of X .  so there exist a point u ε X such that z = Pz = Tu . More over by condition (ii) we 

obtain 

[d(z,Qu)]2   =   [d(Pz ,Qu)]2  ≤     a[d(Pz ,Sz) d(Qu,Tu) + d(Qu ,Sz)d(Pz , Tu)] + 

                                       b[d(Pz ,Sz) d(Pz,Tu) + d(Qu,Tu) d(Qu,Sz)] 

i.e 
            [d(z,Qu)]2   ≤  b[d(z,Qu)]2  

Hence       Qu  =  z     i.e      z  =  Tu  =  Qu 

We have TQu  =  QTu       [ by the definition of the compatible] 

Hence      Tz  =  Qz 

Now 

[d(z,Tz)]2  =  [d(Pz,Qz)]2 ≤ a[d(Pz,Sz)d(Qz,Tz) + d(Qz,Sz)d(Pz,Tz)] +  b[d(Pz,Sz)d(Pz,Tz) + d(Qz,Tz)d(Qz,Sz)] 

i.e           [d(z ,Tz)]2           ≤         a[d(z,Tz)]2 

which is a contradiction. Hence   z  =  Tz   i.e     z  =  Tz  =  Qz 
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Therefore z is common fixed point of P , Q , S and T . 

Similarly  we can prove this when any one of P, Q or T is continuous. 

Finally , in order to prove the uniqueness of z , suppose w be another common 
Fixed Point P, Q , S and T 

then we have 

[d(z,w)]2  =  [d(Pz , Qw)]2 ≤   a[d(Pz , Sz)d(Qw , Tw) + d(Qw , Sw)d(Pz , Tw)] + 

                                                 b[d(Pz , Sz)d(Pz , Tw) + d(Qw , Tw)d(Qw , Sz)] 

which  gives 

                        [d(z,Tw)]2  ≤  a[d(z,Tw)]2 . Hence    z  =  w 

This completes the proof. Therefore,   z  is a unique common Fixed Point of P , Q , S and T . 

 

                                                                                                                                        Hence proved…… 

 

COROLLARY3.1 :-    Let P, Q, S and T be mapping s from a complete  Metric Space (X ,d) into itself 
satisfying the conditions 

(i)   P(X)   ⊆ T(X)  ,  Q(X)  ⊆  S(X) 

(ii) [d(Px ,Qy)]2  ≤     a [d(Px,Sx)d(Qy,Ty) + d(Qy,Sx)d(Px,Ty)]   + 

                                            b[d(Px,Sx)d(Px,Ty) + d(Qy,Ty)d(Qy,Sx)] 

where 0 ≤  a+2b < 1  ; a , b  ≥ 0 

Then   P , Q , S and  T have a unique common Fixed Point. 
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