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Abstract : We seek to explore the effects of three basic types of Collocation points namely points at zeros of 

Legendre polynomials, equally-spaced points with boundary points inclusive and equally-spaced points with 

boundary point non-inclusive. Established in literature is the fact that type of collocation point influences to a 

large extent the results produced via collocation method (using orthogonal polynomials as basis function).   We 

analyse the effect of these points on the accuracy of collocation method of solving second order BVP. For 

equally-spaced points we further consider the effect of including the boundary points as collocation points.  
Numerical results are presented to depict the effect of these points and the nature of problem that is best 

handled by each. 

Keywords – Boundary points, Collocation method, Equally-spaced point, Legendre polynomial, Zeros         

       of Legendre polynomial 

 

 

I. INTRODUCTION 
 

Classical orthogonal polynomials, established to be the most widely used orthogonal polynomials have over the 

years been used for solving scientific problems cutting across different fields of applications in Mathematics, 

physics and engineering. Of these polynomials, the most commonly used type – Jacobi polynomials (whose 
special cases includes; Chebyshev, Legendre and Gegenbauer polynomials) are the most extensively studied and 

widely applied sets [1]. This is basically due to a number of properties that these polynomials exhibit. For 

example the minimax property of the first-kind Chebyshev polynomials )(xTn  makes it to stand out especially 

in the field of approximation [2]. 

 This work however is to deploy the use of Legendre polynomial of the first kind in collocation methods 

of solving second order boundary value problems (BVP). The main purpose is to analyse the effect of different 

types of collocation points on the accuracy of this solution technique. The second order BVP considered is of 

the form: 
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Subject to the boundary condition:   
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 q(x) r(x) and f(x) are real functions of independent variable x. 
 

  Equations (1) and (2) form a 2-point BVP of the second order and it finds relevant application in real 

life situation ranging from science to engineering fields where problems they model include; spring problems, 

electrical circuit problem, buoyancy problems, to mention a few. To these problems, arriving at a close-form 

solution are not always feasible for the mere fact that quite a good number of these real life problems do not 

have analytical solution and even in the availability of these solutions, it is well known that these are not 
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amenable to direct numerical interpretation and hence limited in their usefulness in practical applications ( [3], 

[4]). Also there are some of these differential equations for which the solution in terms of formula are so 

complicated that one often prefers to apply numerical methods ([5],[6],[7]). Owing to these facts, there is always 

the need to develop new numerical methods of solution and to improve on the existing ones. 

 A good number of research work had ever since been carried out on this problem, each providing 

numerical means of solution, for instance in [8], Legendre polynomial is applied via comparison technique 

while David [5] deployed Finite element method (FEM) in solving the same problem. In a bid to enhance results 
many authors had also applied collocation method with different means of improving its solutions (see 

[4],[6],[9]). In this work, we set to portray the comparative advantages of each of the collocation points and to 

display the nature of problem that each can handle best.  

 This paper is organised as follows: Section 2 represents brief introduction to Legendre polynomials and 

its basic properties, in section 3 we give a detailed account on collocation method and collocation points while 

implementation of the method is carried out in section 4. In section 5 illustrative examples are given and 

conclusion drawn in section 6. 

 

II. LEGENDRE POLYNOMIALS 
 

 In this section a brief definition of Legendre polynomial is given, this is needed for easy 

reference and is necessary for the basic properties needed to establish our results. It is to be noted that 
the expression “Legendre polynomial” when no other qualification is attached exclusively refers to 

the Legendre polynomials )(xPn of the first kind. As established in literatures (see ref [8],[10]) 

Legendre polynomial are special  cases of the Legendre function and they satisfy the Legendre 

equation defined as: 
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Solutions of this equation are called Legendre functions of order n. The general solution can be expressed as: 
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Pn(x) and Qn(x) in (4) are respectively the Legendre functions of the first- and second-kind of order n. 

The nth order polynomial Pn(x) is generally given by the following equation: 
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 The basic property of Legendre polynomial is that these are orthogonal to each other with respect to 

weight function w(x) = 1 on  [-1 1]. The first two polynomials are always the same in all cases but the higher 

orders are created with recursive formula: 
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With initial conditions:  
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With the use of (6) and the associated conditions, first few Legendre polynomials are given as follows: 
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 For problems that exist in intervals other than the natural interval, a shifted version of this polynomial 

for a general interval [a b] is obtained through the substitution: 
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 Which transform the interval [a  b] of the t-axis into the interval [-1  1] of the x-axis, hence the new 

polynomial is likewise orthogonal. The recursive relation for the general interval is therefore given as: 
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 where )(* xP n is a shifted Legendre polynomials valid within [a, b] 

 
 

III. LEGENDRE-COLLOCATION METHOD 
 

 Collocation method as one of the broad class methods of weighted residual (MWR) evolved as a 

valuable technique for the solution of a broad class of problems. The technique as adapted in this paper involves 

constructing approximating trial solution of the form: 
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 Where N is the degree of the trial solution, cn are specialized coordinates called degree of 

freedom, Pn(x) is Legendre polynomial of order n. 
The technique in this method, demands that (9) is substituted into (1) to yield: 
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  The true meaning of equation (1) in contrasts to (10) is that if the exact solutions were 

substituted for u(x), with all terms taken to the LHS, then the RHS would identically be zero over the 
entire domain. If other functions such as the approximate trial solution (9) were substituted for u(x), 

the result would be non-zero function in equation (10) called the residual equation [5]. The method 

requires that for each undetermined parameter cn , we choose a point xi called the collocation point in 

the domain of the problem. As established in literatures, the point xi can be located anywhere in the 

domain and on the boundary, not necessarily in any particular pattern but it might be reasonable to 

distribute them evenly [9]. Three methods of selecting these points are considered in the following 

sub-sections. 
 

3.1 Collocation points at zeros of Legendre Polynomials 

 It is important to first consider the following ideas behind location and interlacing of zeros of 

Legendre polynomial and their associated properties. Plotting )(xPn for the first few values of n we 

observed the following: 

a. All zeros of Pn(x) lie in -1 < x < 1. 

b. Between two consecutive zeros of )(1 xPn  there is one of )(xPn . 

c. Between two consecutive zeros of )(xPn there is one of )(1 xPn  

d. Between the smallest zero of )(xPn  and -1 there is one zero of )(1 xPn  and between 

 the largest zero of )(xPn  and +1, there is one zero of )(1 xPn . 
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 According to the idea of Lanczos [11], collocating at the zeros of orthogonal polynomials 

requires that at the zeros of relevant orthogonal polynomial, the residual equation (10) is satisfied, 
thus yielding a number of collocation equations of the form: 
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It is worthy of note that the polynomial )(1 xPN  is used in obtaining the collocation points so as to 

yield N-1 zeros needed to collocate equation (10). 

 

3.2 Collocating at equally-spaced point (Boundary points non-inclusive) 

 The technique here demands that instead of collocating at points on zeros of )(1 xPN  , the 

collocation points are determined by the use of: 
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 Where a and b are respectively the lower and upper bound of the interval, N is the chosen 

degree of the trial solution.  

 It is to be noted that equation (12) yields points that are located within the interval of 

consideration without the inclusion of boundary points a and b. 
    

3.3 Collocating at equally-spaced point (Boundary points inclusive) 
 We hereby choose collocation points such that xi is spread across the given interval with the 

boundary points included. These points are determined by the use of: 
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where all parameters are as defined above. 

 

IV. IMPLEMENTATION OF LEGENDRE-COLLOCATION METHOD 

 Collocating the residual equation (10) at any of the collocation points xi discussed in 

preceding sections yields N-1 collocation equations of the form in equation (11). For the second order 

BVP in equations (1-2), the method of solution under discussion demands that two equations be 
fetched from boundary conditions (2), by imposing (2) on the trial solution (9). These equations from 

the BCs in conjunction N-1 equations in (11) yield a system of N+1 equations which are solved by the 

use of any of the algebraic system solvers to give numerical values of cn, these are thereafter 

substituted back into trial solution (9) to yield the required approximate solution to problem (1-2). 

 

V. Illustrative examples 
 Given below are numerical examples to illustrate the simplicity and the applicability of the 

discussed method. 
 

 

 

Example 5.1 
Solve the boundary value problem: 
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Example 5.2 
Consider the differential equation: 
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Subject to boundary conditions: 
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Example 5.3 
Solve the second-order differential equation: 
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The exact solution is:  
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Table 5.1   Table of Error for Question 5.1 
 

X Collocation point N=4 N=6 N=8 

N=10 

 

 

 

0 

Points at zeros of PN-1(x) 3.2960e-017 4.4385e-017 3.8291e-017 4.2486e-017 

Equally-spaced B.N   1.5613e-017   6.3290e-018   8.5338e-018   4.3749e-017 

Equally-spaced B.I   1.0408e-017   2.9057e-017   9.0939e-018   8.7264e-018 

 

0.1 

Points at zeros of PN-1(x)   7.3418e-004   3.0938e-006   1.3390e-009   2.6482e-012 

Equally-spaced B.N   1.6076e-003   1.3046e-005   4.3653e-008   8.2341e-011 

Equally-spaced B.I   3.5346e-003   1.3956e-005   2.9512e-008   3.7309e-011 

 

0.2 

Points at zeros of PN-1(x)   1.7550e-003   5.1467e-007   6.3551e-009   1.6953e-012 

Equally-spaced B.N   1.3052e-003   8.4257e-006   2.8280e-008   5.6958e-011 

Equally-spaced B.I   5.4162e-003   1.1680e-005   1.4000e-008   1.7597e-011 

 

0.3 

Points at zeros of PN-1(x)   1.9616e-003   5.1000e-006   1.4458e-009   4.0379e-012 

Equally-spaced B.N   5.4312e-004   4.6808e-006   1.8213e-008   3.6240e-011 

Equally-spaced B.I   4.9633e-003   2.2892e-006   6.0356e-009   1.4176e-011 

 

0.4 

Points at zeros of PN-1(x)   1.0944e-003   5.5075e-006   8.7763e-009   6.9652e-012 

Equally-spaced B.N   3.2694e-005   1.9304e-006   7.0636e-009   1.5265e-011 

Equally-spaced B.I   2.3783e-003   2.7181e-006   5.6798e-009   4.9766e-012 

 

0.5 

Points at zeros of PN-1(x)   4.8826e-004   3.1752e-007   2.0787e-010   1.0020e-013 

Equally-spaced B.N   3.5775e-004   1.5408e-006   3.6262e-009   5.4176e-012 

Equally-spaced B.I   1.4758e-003   1.3212e-006   1.9832e-009   2.0260e-012 

 

0.6 

Points at zeros of PN-1(x)   2.0708e-003   6.1160e-006   9.1262e-009   7.0867e-012 

Equally-spaced B.N   6.8840e-004   5.0220e-006   1.4358e-008   2.6151e-011 

Equally-spaced B.I   5.3361e-003   3.1520e-008   9.6272e-009   9.0723e-012 

 

0.7 

Points at zeros of PN-1(x)   2.8833e-003   5.3757e-006   1.2064e-009   4.3765e-012 

Equally-spaced B.N   1.2986e-003   7.7828e-006   2.5623e-008   4.7297e-011 

Equally-spaced B.I   7.8428e-003   5.3638e-006   9.7931e-009   1.8364e-011 

 

0.8 

Points at zeros of PN-1(x)   2.4545e-003   1.0109e-006   7.0619e-009   1.7165e-012 

Equally-spaced B.N   2.1272e-003   1.1677e-005   3.5808e-008   6.8249e-011 

Equally-spaced B.I   7.8917e-003   1.5515e-005   1.8202e-008   2.1656e-011 

 

0.9 

Points at zeros of PN-1(x)   1.0206e-003   3.8559e-006   1.6525e-009   2.8945e-012 

Equally-spaced B.N   2.3689e-003   1.6551e-005   5.1897e-008   9.4368e-011 

Equally-spaced B.I   5.0440e-003   1.7445e-005   3.4758e-008   4.2550e-011 

 

1.0 

Points at zeros of PN-1(x)   3.2960e-017   4.4385e-017   3.8291e-017   1.7956e-016 

Equally-spaced B.N   1.5613e-017   6.3290e-018   2.1351e-016   4.3749e-017 

Equally-spaced B.I   1.0408e-017   2.9057e-017   9.0939e-018   1.1975e-016 
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Table 5.2   Table of Error for Question 5.2 

 

X Collocation point N=4 N=6 N=8 

N=10 

 

 

 

2.0 

Points at zeros of PN-1(x) 2.2204e-016  0 1.7764e-015  6.2172e-015 

Equally-spaced B.N   4.4409e-016   8.8818e-016   8.8818e-016   1.1546e-014 

Equally-spaced B.I   4.4409e-016   4.4409e-016   1.3323e-015   6.2172e-015 

 

2.1 

Points at zeros of PN-1(x)   1.6734e-005   2.2511e-007   7.2800e-010   1.3195e-011 

Equally-spaced B.N   3.9775e-005   9.4586e-007   2.0701e-008   4.4617e-010 

Equally-spaced B.I   8.6139e-005   1.0232e-006   1.4230e-008   2.0697e-010 

 

2.2 

Points at zeros of PN-1(x)   4.0414e-005   7.7577e-008   2.6683e-009   6.6994e-012 

Equally-spaced B.N   3.6666e-005   7.0486e-007   1.5185e-008   3.4225e-010 

Equally-spaced B.I   1.3508e-004   9.4624e-007   8.2339e-009   1.1685e-010 

 

2.3 

Points at zeros of PN-1(x)   4.7938e-005   2.6433e-007   2.7736e-010   1.9521e-011 

Equally-spaced B.N   2.4057e-005   5.0963e-007   1.1736e-008   2.5920e-010 

Equally-spaced B.I   1.3635e-004   4.1336e-007   5.1518e-009   1.0368e-010 

 

2.4 

Points at zeros of PN-1(x)   3.6033e-005   3.1440e-007   3.1654e-009   2.8535e-011 

Equally-spaced B.N   1.4636e-005   3.7013e-007   7.8748e-009   1.7443e-010 

Equally-spaced B.I   9.8246e-005   1.2457e-007   5.0505e-009   6.5191e-011 

 

2.5 

Points at zeros of PN-1(x)   1.2346e-005   3.5056e-008   2.1961e-010   1.5886e-012 

Equally-spaced B.N   9.3080e-006   1.9475e-007   4.1657e-009   9.0822e-011 

Equally-spaced B.I   3.8908e-005   1.7684e-007   2.3706e-009   3.5344e-011 

 

2.6 

Points at zeros of PN-1(x)   1.1421e-005   2.4762e-007   2.7978e-009   2.6564e-011 

Equally-spaced B.N   4.0567e-006   1.9395e-008   4.7603e-010   7.5346e-012 

Equally-spaced B.I   2.0513e-005   2.3331e-007   3.4290e-010   5.9213e-012 

 

2.7 

Points at zeros of PN-1(x)   2.4839e-005   2.3697e-007   5.4209e-010   1.4194e-011 

Equally-spaced B.N   4.7243e-006   1.2217e-007   3.3357e-009   7.6248e-011 

Equally-spaced B.I   6.1205e-005   1.2841e-008   6.8530e-010   3.1661e-011 

 

2.8 

Points at zeros of PN-1(x)   2.2947e-005   1.4063e-008   1.9072e-009   6.4622e-012 

Equally-spaced B.N   1.6039e-005   3.0551e-007   6.7756e-009   1.5818e-010 

Equally-spaced B.I   7.0887e-005   4.6112e-007   3.3492e-009   4.7768e-011 

 

2.9 

Points at zeros of PN-1(x)   9.5744e-006   1.3148e-007   3.6659e-010   9.1793e-012 

Equally-spaced B.N   2.0967e-005   5.2456e-007   1.1687e-008   2.5401e-010 

Equally-spaced B.I   4.7125e-005   5.8867e-007   8.3021e-009   1.2041e-010 

 

3.0 

Points at zeros of PN-1(x)   1.1102e-015   3.5527e-015   1.0658e-014   2.7534e-014 

Equally-spaced B.N   1.3323e-015   8.8818e-016   1.3323e-014   7.9936e-015 

Equally-spaced B.I             0   3.9968e-015   6.6613e-015   6.2172e-015 

 

Table 5.3   Table of Error for Question 5.3 
 

X Collocation point N=4 N=6 N=8 

N=10 

 

 

 

0 

Points at zeros of PN-1(x)             0             0             0             0 

Equally-spaced B.N             0             0             0             0 

Equally-spaced B.I             0             0             0             0 

 

0.2 

Points at zeros of PN-1(x)   5.2505e-003   1.8755e-003   8.0674e-005   1.6641e-005 

Equally-spaced B.N   8.6995e-003   1.1856e-002   9.7631e-004   7.1869e-004 

Equally-spaced B.I   3.8744e-002   7.0400e-003   1.1262e-003   1.9757e-004 

 

0.4 

Points at zeros of PN-1(x)   1.1488e-002   4.0070e-005   8.4109e-005   1.5204e-005 

Equally-spaced B.N   2.0488e-002   8.2752e-003   1.6290e-003   4.3615e-004 

Equally-spaced B.I   6.3717e-002   4.2743e-003   1.1358e-003   2.8918e-005 

 

0.6 

Points at zeros of PN-1(x)   1.9646e-002   3.0789e-003   9.9106e-005   2.0685e-005 

Equally-spaced B.N   3.1296e-002   5.4423e-003   1.9550e-003   2.2220e-004 

Equally-spaced B.I   8.1109e-002   1.4565e-003   1.0614e-003   9.3062e-006 

 

0.8 

Points at zeros of PN-1(x)   3.2668e-002   2.5644e-003   6.7116e-005   4.3130e-005 

Equally-spaced B.N   3.5301e-002   3.5831e-003   2.1238e-003   5.6518e-005 

Equally-spaced B.I   9.7684e-002   3.5117e-003   9.5064e-004   6.8536e-005 

 

1.0 

Points at zeros of PN-1(x)   4.6667e-002   4.5375e-004   8.4893e-005   5.3482e-006 

Equally-spaced B.N   3.3762e-002   1.9507e-003   2.1399e-003   5.7759e-005 

Equally-spaced B.I   1.1194e-001   2.3302e-003   9.1538e-004   9.4774e-005 

 

1.2 

Points at zeros of PN-1(x)   5.4188e-002   2.4344e-003   1.6187e-004   3.4291e-005 

Equally-spaced B.N   3.1759e-002   7.8444e-004   2.0831e-003   1.3265e-004 

Equally-spaced B.I   1.1737e-001   1.4991e-003   8.4862e-004   1.1009e-004 

 

1.4 

Points at zeros of PN-1(x)   4.9710e-002   1.6867e-003   1.9942e-005   2.1672e-005 

Equally-spaced B.N   3.2693e-002   1.0407e-004   1.9979e-003   1.8018e-004 

Equally-spaced B.I   1.0796e-001   2.8758e-003   6.6958e-004   1.2531e-004 

 Points at zeros of PN-1(x)   3.3198e-002   3.5849e-004   1.3338e-004   5.5973e-006 
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1.6 Equally-spaced B.N   3.4733e-002   4.8514e-004   1.8577e-003   2.0683e-004 

Equally-spaced B.I   8.1759e-002   4.9399e-003   6.7189e-004   1.1176e-004 

 

1.8 

Points at zeros of PN-1(x)   1.1721e-002   9.4708e-004   3.9418e-005   1.0252e-005 

Equally-spaced B.N   2.9195e-002   9.7570e-004   1.8788e-003   2.3217e-004 

Equally-spaced B.I   4.2464e-002   4.3731e-003   7.7360e-004   1.5467e-004 

 

2.0 

Points at zeros of PN-1(x)   7.2164e-016   7.2164e-016   5.4956e-015   4.1633e-015 

Equally-spaced B.N   6.1062e-016   1.1657e-015   3.6082e-015   1.1047e-014 

Equally-spaced B.I   1.6653e-016   6.1062e-016   1.0936e-014   2.9421e-015 

 

VI. CONCLUSION 
  In accordance with established facts, it is clearly observed from the results produced that these points 

are valid for collocation method via Legendre polynomial as trial functions. Errors accrued on each example are 

also minimal that these can be functionally applied in practical setting.  A further study of these results likewise 

depicts that on a good number of problems, points at zeros of Legendre polynomial performed better, but at the 
boundaries region, equally-spaced points (with boundary points inclusive) produced better results. Also with a 

large degree of trial solution N, it is observed that with equally spaced point, better results are consistently 

achieved. We thus conclude that these techniques are not only effective numerical techniques but also efficient 

means of obtaining approximate solution that are close enough to the exact solution as to be useful in 

application, each with varying degree of accuracies. We therefore recommend that these techniques be extended 

to higher order problems. 
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