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Abstract: Given a set of polynomials 𝐹 ⊆ 𝑘 𝑋 , what is the dimension of the affine variety 𝐕 𝐹 ? Giving an 

affirmative answer to this question was never so easier in algebraic geometry until the development of Groebner 

basis. Groebner bases are nice because we can compute these; and this is Buchberger algorithm which makes 

Groebner bases so fruitful. Given a polynomial collection 𝐹 ⊆ 𝑘 𝑋 , Groebner basis helps in computing free set 

in 𝑘 𝑋  with respect to the ideal  𝐹 . Then dimension of  𝐕 𝐹  equals the cardinality of the free set with respect 

to  𝐹 . Here we describe an algorithm for computing such free set and answer the aforementioned question 

from computational point of view. We see that, in case of finding dimension of affine variety, computational 

technique is much more informative and motivating than theoretical method. 
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I. Introduction 
Affine varieties are the solution sets to systems of polynomial equations in several unknowns. Let  

𝐹 =  𝑓1 , 𝑓2 , … , 𝑓𝑠  be a subset of the polynomial ring 𝑘 𝑋  where 𝑘 is a field of scalars and 𝑋 =  𝑥1 , 𝑥2 , … , 𝑥𝑛  . 
Then an affine variety defined by 𝐹, denoted by 𝐕 𝐹  or 𝐕 𝑓1 , 𝑓2 , … , 𝑓𝑠 , is the common zero locus of the 

polynomial collection 𝐹 i.e. 𝐕 𝐹  equals the set   𝑎1 , 𝑎2 , … , 𝑎𝑛  ∈ 𝑘𝑛 ∶  𝑓𝑖 𝑎1 , 𝑎2 , … , 𝑎𝑛  = 0,   1 ≤ 𝑖 ≤ 𝑠 . In 

words, affine varieties are points, curves, surfaces and higher dimensional objects defined by polynomial 

equations. For example, consider the polynomial collection 𝐹1 =  9𝑥2 + 4𝑦2 − 36, 𝑥2 − 𝑦2 − 9 ⊆ ℂ 𝑥, 𝑦 . In 

 ℝ2, 𝐕 9𝑥2 + 4𝑦2 − 36  is an ellipse and  𝐕 𝑥2 − 𝑦2 − 9  is a hyperbola where 𝐕 𝐹1 = ∅ because no point of 

ℂ2 satisfies 9𝑥2 + 4𝑦2 − 36 = 0 and  𝑥2 − 𝑦2 − 9 = 0 simultaneously (Fig. 1). Now interchanging the 

coefficients of 𝑥2 and 𝑦2 in the first polynomial of  𝐹1, we have  𝐹2 =  4𝑥2 + 9𝑦2 − 36, 𝑥2 − 𝑦2 − 9  and 

 𝐕 𝐹2 =   3, 0 ,  −3, 0  , (Fig. 2), which is a nonempty finite subset of ℂ2 containing the points  3, 0  and 

  −3, 0 . Let us now consider the polynomial collection 𝐹3 =  𝑦 − 𝑥2 , 𝑧 − 𝑥3 ⊆ ℂ 𝑥, 𝑦, 𝑧 . Then the variety 

𝐕 𝐹3  is an infinite subset of ℂ3. It is a curve in  ℝ3 known as the twisted cubic (Fig. 3). It is the intersection of 

the varieties 𝐕 𝑦 − 𝑥2  and  𝐕 𝑧 − 𝑥3 , which are the surfaces  𝑦 = 𝑥2  and  𝑧 = 𝑥3 in  ℝ3. 
   

                                                       
                       Figure 1: 𝐕 𝐹1 ∩ ℝ2                                                            Figure 2: 𝐕 𝐹2 ∩ ℝ2 

 

The dimension of a variety 𝑉, denoted by 𝑑𝑖𝑚V, is defined to equal the length 𝑑 of the longest possible 

chain 𝑉 = 𝑉𝑑 ⊃ 𝑉𝑑−1 ⊃ ⋯ ⊃ 𝑉2 ⊃ 𝑉1 ⊃ 𝑉0 . With this definition, since the smallest irreducible varieties are 

singletons, finite varieties are zero-dimensional, lines are one-dimensional, planes are of dimension two and so 

on. When we have one equation in ℝ2, we get curve(s), for example 𝐕 9𝑥2 + 4𝑦2 − 36  and 𝐕 𝑥2 − 𝑦2 − 9  
(Fig 1); when we have one equation in ℝ3, we get a surface, for example 𝐕 𝑦 − 𝑥2  and 𝐕 𝑧 − 𝑥3  (Fig 3). 

Thus in each case the dimension drops by 1. Now consider the case of two equations. For two equations in ℝ2, 

we get a set of points, for example 𝐕 𝐹2  (Fig 2);  two equations in ℝ3 give a curve, for example 𝐕 𝐹3  (Fig 3). 
Thus in these cases the dimension drops by 2. Since each equation imposes an extra constraint, intuition 

suggests that each equation drops the dimension by 1. Unfortunately, this is not the case in general. To see this, 

consider the variety 𝐕 𝐹1  shown in the Fig 1, where two equations in ℝ2 give an empty set. A more confusing 

situation occurs in case of the variety 𝐕 𝑥𝑧, 𝑦𝑧 ∩ ℝ3, shown in the Fig 4, which contains both the 𝑍 axis and 

the 𝑋𝑌 plane. However throughout this paper we want to answer the following question from a computational 

point of view.  

Given 𝐹 ⊆ 𝑘 𝑋 , what is the dimension of the affine variety 𝑽 𝐹 ? 
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            Figure 3: 𝐕 𝐹3 ∩ ℝ3                                                                             Figure 4: 𝐕 𝑥𝑧, 𝑦𝑧 ∩ ℝ3 

 

Since, in algebraic geometry we study geometry through algebraic method, it becomes abstract and 

difficult by its nature. Groebner basis removes this abstractness and presents algebraic geometry as much more 

practical and experimental subject. In many problems in the polynomial rings, we have to operate with ideals 

and finite sets of their generators. For a given polynomial ideal, Groebner basis is one of such generating sets 

with many nice properties. Groebner bases are so useful mainly because we can compute these. The main 
contribution of Buchberger was to give an algorithm, known as Buchberger algorithm, whose input is a finite set 

of polynomials 𝐹 and whose output is a Groebner basis for the ideal generated by the elements of 𝐹. Here in 

Section 2, we give a very short note on the construction of Groebner basis. In Section 3, we show that how 

Groebner basis helps us computing free set which directly determines dimension of affine varieties. 

 

II. Groebner Basis 
The simplest polynomials in the ring 𝑘 𝑋  are the monomials, which are the polynomials of the form 

𝑥𝛼 = 𝑥1
𝛼1𝑥2

𝛼2 …𝑥𝑛
𝛼𝑛 , where we define 𝛼 =  𝛼1 , 𝛼2 , … , 𝛼𝑛  ∈ ℤ≥0

𝑛 . We set  𝛼 = 𝛼1 + 𝛼2 + ⋯+ 𝛼𝑛  and call 
 𝛼 , the degree of the monomial 𝑥𝛼 . For 0 ≠ 𝑎𝛼 ∈ 𝑘, 𝑎𝛼𝑥

𝛼  is called a term in 𝑘 𝑋 and 𝑎𝛼  is called the 

coefficient of the term 𝑎𝛼𝑥
𝛼 . Every polynomial 𝑓 ∈ 𝑘 𝑋  is a finite sum of terms. For algorithmic purposes, we 

need to impose an ordering (>) on the monomials in 𝑘 𝑋  so that the terms in a polynomial are always ordered. 

One of the most commonly used monomial order on 𝑘 𝑋  is lexicographic(lex) monomial order. Please see [1] 

for more detailed. For 𝑥𝛼 , 𝑥𝛽 ∈ 𝑘 𝑋 , 𝑥𝛼 >𝒍𝒆𝒙 𝑥𝛽  if in the vector difference 𝛼 − 𝛽 ∈ ℤ𝑛 , the left-most nonzero 

entry is positive. Now let 𝑓 = 𝑎𝛼𝑥
𝛼  be a nonzero polynomial in 𝑘 𝑋  and let > be a monomial order. Then 

max w.r.t.>  𝛼 ∈ ℤ≥0
𝑛 : 𝑎𝛼 ≠ 0  is called multi-degree of 𝑓and is denoted by 𝑚𝑢𝑙𝑡𝑖𝑑𝑒𝑔 𝑓  and the term 𝑎𝛼𝑥

𝛼  

such that 𝛼 = 𝑚𝑢𝑙𝑡𝑖𝑑𝑒𝑔 𝑓  is called the leading term of 𝑓 and is denoted by 𝐿𝑇 𝑓 . 
For an ideal 𝐼 ⊆ 𝑘 𝑋 , the ideal generated by the leading terms of 𝐼  is called leading ideal of 𝐼 and it is 

denoted by  𝐿𝑇 𝐼  . Then a generating set 𝐺 = {𝑔1 , 𝑔2 , … , 𝑔𝑡} is said to be a Groebner basis for the ideal 𝐼 if 
 𝐿𝑇 𝑔1 , 𝐿𝑇 𝑔2 ,… , 𝐿𝑇 𝑔𝑡  =  𝐿𝑇 𝐼  . Since every leading ideal is finitely generated Groebner basis always 

exists. The algorithm 𝐺 ⟵ 𝐺𝑟𝑜𝑒𝑏𝑛𝑒𝑟𝐵𝑎𝑠𝑖𝑠 𝑓1 , 𝑓2 , … , 𝑓𝑠 , >  [2] returns Groebner basis with respect to the 

monomial order > for the polynomial collection 𝐹 =  𝑓1 , 𝑓2 , … , 𝑓𝑠 . But Groebner bases computed in this way 
varies according to the monomial order chosen. However, this confusing is removed by introducing reduced 

Groebner basis which uniquely exists for any polynomial ideal and does not depend on monomial ordering [1]. 

A reduced Groebner basis for a polynomial ideal 𝐼 is a Groebner basis 𝐺 for 𝐼 such that for all 𝑔 ∈ 𝐺, 

coefficient of 𝐿𝑇 𝑔  equals 1 and no monomial of 𝑔 lies in the ideal  𝐿𝑇 𝐺 −  𝑔   . The algorithm 𝐺𝑟𝑒𝑑 ⟵
𝑅𝑒𝑑𝐺𝑟𝑜𝑒𝑏𝑛𝑒𝑟𝐵𝑎𝑠𝑖𝑠 𝑓1 , 𝑓2 , … , 𝑓𝑠 , >  [2] returns reduced Groebner basis for the polynomial collection 𝐹 =
 𝑓1 , 𝑓2 , … , 𝑓𝑠 . We note that the reduced Groebner basis for the whole ideal 𝑘 𝑋 , the collection of all 

polynomials in the variables in 𝑋, equals  1  [1].  
 

III. Computing Free Set 
Free sets are closely related to the dimension of affine varieties. The dimension of an affine variety 

equals the cardinality of the free set. Therefore computing free set is the other word of determining dimension of 

affine variety. Let 𝐹 =  𝑓1 , 𝑓2 , … , 𝑓𝑠 ⊆ 𝑘 𝑋  be given. Then a set 𝑆 ⊆  𝑥1 , 𝑥2 , … , 𝑥𝑛   is said to be free in 𝑘 𝑋  
with respect to the ideal  𝐹  if no monomial in the variables in 𝑆 appear in the leading ideal  𝐿𝑇 𝐹  . For 

example, consider the ideal  𝐻 ⊆ ℂ 𝑥, 𝑦  where  𝐿𝑇(𝐻) =  𝑥2𝑦, 𝑦4 . Then the free set 𝑆 in ℂ 𝑥, 𝑦  with 

respect to  𝐻  contains only the variable 𝑥 i.e. 𝑆 =  𝑥 , because in this case no monomial only in the variable 𝑥 

is in  𝑥2𝑦, 𝑦4 . The following proposition shows that we can describe an algorithm for computing the free set 
with respect to a given ideal. 

 

Proposition: Let 𝐹 =  𝑓1 , 𝑓2 , … , 𝑓𝑠 ⊆ ℚ 𝑋  and a monomial order > be given. Then there is an algorithm for 

computing the free set in ℚ 𝑋  with respect to  𝐹 . 
Proof: Here we present the algorithm 𝑆 ⟵ 𝐶𝑜𝑚𝑝𝐹𝑟𝑒𝑒𝑆𝑒𝑡(𝐹, >) in pseudo code which returns the free set 𝑆 in 

ℚ 𝑋  with respect to the ideal  𝐹 . 
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Algorithm: 𝑆 ⟵ 𝐶𝑜𝑚𝑝𝐹𝑟𝑒𝑒𝑆𝑒𝑡 (𝐹, >) 

Input: 𝐹 =  𝑓1 , 𝑓2 , … , 𝑓𝑠 ⊆ ℚ 𝑋  and a term order > 

Output: 𝑆, the free set in ℚ 𝑋  w.r.t.  𝐹  
 

𝐛𝐞𝐠𝐢𝐧 

𝐺𝑟𝑒𝑑 ≔ 𝑅𝑒𝑑𝐺𝑟𝑜𝑒𝑏𝑛𝑒𝑟𝐵𝑎𝑠𝑖𝑠  𝑓1 , 𝑓2 , … , 𝑓𝑠 , >  
 𝑆 ≔ ∅ 

𝐢𝐟 𝐺𝑟𝑒𝑑 =  1  𝐭𝐡𝐞𝐧 

 𝐫𝐞𝐭𝐮𝐫𝐧 

𝐞𝐧𝐝 𝐢𝐟 
𝐟𝐨𝐫 each  𝑥𝑖 ∈  𝑥1, 𝑥2, … , 𝑥𝑛  𝐝𝐨 

 𝑆 ≔ 𝑆 ∪  𝑥𝑖  
 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑓𝑜𝑢𝑛𝑑 ≔ 𝐟𝐚𝐥𝐬𝐞 

 𝐟𝐨𝐫 each 𝑓𝑗 ∈ 𝐺𝑟𝑒𝑑  𝐝𝐨 

 𝐢𝐟 𝑚𝑢𝑙𝑡𝑖𝑑𝑒𝑔  𝐿𝑀 𝑓𝑗   =  𝛽𝑘 × 𝑚𝑢𝑙𝑡𝑖𝑑𝑒𝑔  𝑥𝑘 𝑥𝑘∈𝑆
 𝐭𝐡𝐞𝐧 

 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑓𝑜𝑢𝑛𝑑 ≔ 𝐭𝐫𝐮𝐞 

 𝐺𝑟𝑒𝑑 ≔ 𝐺𝑟𝑒𝑑 −  𝑓𝑗   

 𝐢𝐟 𝐺𝑟𝑒𝑑 =  1  then 

 𝑆 ≔ 𝑆 −  𝑥𝑖  
 𝐫𝐞𝐭𝐮𝐫𝐧 

 𝐞𝐧𝐝 𝐢𝐟 
 𝐞𝐧𝐝 𝐢𝐟 

 𝐞𝐧𝐝 𝐟𝐨𝐫 

 𝐢𝐟 𝑚𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝑓𝑜𝑢𝑛𝑑 ≔ 𝐭𝐫𝐮𝐞 𝐭𝐡𝐞𝐧 

 𝑆 ≔ 𝑆 −  𝑥𝑖  
 𝐞𝐧𝐝 𝐢𝐟 

𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐞𝐧𝐝 

 

 

Let us now see how this algorithm works and computes 𝑆 successfully. On computing the reduced Groebner 

basis 𝐺𝑟𝑒𝑑  for  𝐹 , this algorithm checks whether 𝐺𝑟𝑒𝑑  equals  1 . If so, it returns with 𝑆 as an empty set, 

because in this case monomials in each variables in {𝑥1 , 𝑥2 , … , 𝑥𝑛 } is in the ideal  𝐿𝑇(𝐹) . In case of nontrivial 

outputs it executes two loops with finite number of indices. Hence there is no cause to fall into infinite loop. In 

𝑖 − 𝑡𝑕 step in the outer loop 𝑥𝑖  is added to 𝑆 considering 𝑥𝑖  is free in ℚ 𝑋 . For each polynomial 𝑓𝑗 ∈ 𝐺𝑟𝑒𝑑 , in 

the inner loop it checks if 𝑚𝑢𝑙𝑡𝑖𝑑𝑒𝑔  𝐿𝑀 𝑓𝑗    equals  𝛽𝑘 0, … ,0, 1,0,… ,0 𝑥𝑘∈𝑆
  ∵ 𝑚𝑢𝑙𝑡𝑖𝑑𝑒𝑔 𝑥𝑘 =

0,…,0, 1,0,…,0 i.e. if 𝐿𝑀𝑓𝑗 equals a monomial 𝑥𝑘∈𝑆𝑥𝑘𝛽𝑘  in the variables in 𝑆. Each time it finds such an 

𝑓𝑗 ∈ 𝐺𝑟𝑒𝑑  for any 𝑥𝑖 , it updates 𝑆 by removing 𝑥𝑘  from it so that 𝑆 contains only those 𝑥𝑖  which are free in ℚ 𝑋  

with respect to the ideal  𝐹 . It also updates 𝐺𝑟𝑒𝑑 by removing 𝑓𝑗 to prevent the repetition of same monomial 

match. Once continuation of the process stops either if 𝐺𝑟𝑒𝑑 =  1  or if every 𝑥𝑖 ∈  𝑥1 , 𝑥2 , … , 𝑥𝑛   is added to 𝑆 

and checked for monomial match. Therefore, at the end 𝑆 is left containing only those variables 𝑥𝑖  which are 

free in ℚ 𝑋  with respect to the ideal  𝐹 . □ 

 

IV. Computing Dimension 
Here we recall the dimension criterion theorem [3] and the algorithm “𝑆 ⟵ 𝐶𝑜𝑚𝑝𝐹𝑟𝑒𝑒𝑆𝑒𝑡(𝐹, >)”, to 

complete our answer. The dimension theorem states that “For given 𝐹 ⊆ 𝑘 𝑋  and a monomial order >, the 

cardinality of the free set in 𝑘 𝑋  with respect to  𝐹  equals dimension of 𝐕 𝐹  i.e.  𝑆 = dim𝐕 𝐹 .” Therefore, 

to compute the dimension of the variety of a given polynomial collection 𝐹 ⊆ 𝑘 𝑋 , we need only two steps- 

𝑆 ∶= 𝐶𝑜𝑚𝑝𝐹𝑟𝑒𝑒𝑆𝑒𝑡(𝐹, >) and then 𝑑𝑖𝑚𝐕 𝐹 ∶=  𝑆 . For example, since no monomial consisting only the 

variables 𝑥 and 𝑦 is present in the ideal 𝐼 =  𝑥𝑧, 𝑦𝑧 , the set 𝑆 =  𝑥, 𝑦  is free in ℂ 𝑥, 𝑦, 𝑧  with respect to 𝐼. 
Hence the dimension of the variety 𝐕 𝐼  equals  𝑆 = 2. On the other hand, dimension of a variety containing 

more than one irreducible component is same as the maximum dimension of its irreducible components [4]. 

Since the only irreducible components of variety 𝐕 𝑥𝑧, 𝑦𝑧 are the 𝑋𝑌 plane and the 𝑍 axis (Fig 4), the 

dimension of 𝐕 𝑥𝑧, 𝑦𝑧  equals two, the dimension of the 𝑋𝑌 plane. 

 

V. Conclusions 
Developing a good theory of dimension is a challenging problem in the area of algebraic geometry. 

Idea of free set gives easier option to this demand and more others. Recalling the dimension criterion theorem 
and our algorithm for computing free set allow us to solve the dimension problem completely. Since this 

algorithm uses directly the definition of free set it becomes time consuming in case of the polynomial 

collections with big Groebner basis. However, the ability of computing dimension of affine varieties must give 

strength to further studies in this area. 
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