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Abstract: Tetrahedron is the only 3-simplex convex polyhedron having four faces, and its shape has a wide 

application in science and technology. In this article, using graph theory and combinatorics, a study on a 

special type of tetrahedron called coxeter Andreev’s tetrahedron has been facilitated and it has been found that 

there are exactly one, four and thirty coxeter Andreev’s tetrahedrons having respectively two edges of order 

6n  , one edge of order 6n   and no edge of order 6n  , n N  upto symmetry. 
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I. Introduction  
A simplex (in plural, simplexes or simplices) is a generalization [1] of the notion of a triangle or 

tetrahedron to arbitrary dimensions. Specifically, a k-simplex is a k-dimensional polytope which is the convex 

hull of its 1k   vertices. Tetrahedron is the only 3-simplex convex polyhedron having four faces. The angle 

between two faces of a polytope, measured from perpendiculars to the edge created by the intersection of the 

planes is called a dihedral angle. Roland K. W. Roeder’s Theorem [11] provides the classification of compact 

hyperbolic tetrahedron by restricting to non-obtuse dihedral angles. A simple polytope P  in n -dimensional 

space 
nX  / /X E S H  is said to be coxeter, if the dihedral angles of P  are of the form 

n


 where, n  is 

a positive integer 2 . Vinberg proved in [24] that there are no compact hyperbolic coxeter polytopes in 
nH  

when 30n  . Tumarkin classified the hyperbolic coxeter pyramids in terms of coxeter diagram and John 

Mcleod generalized it in his article [9]. D. A. Derevnin, at el [18] found the volume of symmetric tetrahedron. 

 
The tetrahedron shape has a wide application [2] in engineering and computer science. Tetrahedral mess 

generation is one of such application. In chemistry, the tetrahedron shape is seen in nature in covalent bonds of 

molecules. For example, in a methane molecule  4CH  or an ammonium ion  4NH 
, four hydrogen atoms 

surround a central carbon or nitrogen atom with tetrahedral symmetry.  

In this paper, a study on geometric shapes of a special type of tetrahedron called coxeter Andreev’s 

tetrahedron has been carried out by the link of graph theory and combinatorics, and it has been found that there 

are exactly one, four and thirty coxeter Andreev’s tetrahedrons having respectively two edges of order 6n  , 

one edge of order 6n   and no edge of order 6n  , n N  upto symmetry. 

 

The paper is organised as follows: 

The section 1 includes introduction. The section 2 focuses some basic terminologies from graph theory and 

geometry. The section 3 presents new definitions and results. The conclusions are included in section 4. 

 

II. Basic Terminologies 
There is a strong link between graph theory and geometry. Graph theoretical concepts are used to 

understand the combinatorial structure of a polytope in geometry. Here we will mention some essential 

terminologies from graph theory and geometry.  

 

Definition 2.1: A polytope is a geometric object with surfaces enclosed by edges that exist in any number of 

dimensions. A polytope in 2D, 3D and 4D is said to be polygon, polyhedron (plural polyhedra or polyhedrons) 

and polychoron respectively. The enclosed surfaces are said to be faces. The line of intersection of any two 

faces is said to be an edge and a point of intersection of three or more edges is called a vertex.  

 



Properties of Coxeter Andreev’s Tetrahedrons 

www.iosrjournals.org                                                     82 | Page 

Definition 2.2: Let P  be a polyhedron. The abstract graph of P  is denoted by  G P  and is defined as 

      ,G P V P E P , where  V P  is the set of vertices of P  and two vertices  ,x y V P  are 

adjacent if and only if  ,x y  is an edge of P . 

Definition 2.3: A coxeter dihedral angle is a dihedral angle of the form 
n


 where, n  is a positive integer 2 . 

A polytope with coxeter dihedral angles is called a coxeter polytope. 

 

Remark 2.4: A non-obtuse angle   is such that 0
2


  . Coxeter dihedral angles are of the form 

n


 , n  

is a positive integer 2 . Therefore coxeter dihedral angles are non-obtuse.  

 

Definition 2.5: A prismatic k  circuit  p k  is a k  circuit such that no two edges of C  which correspond 

to edges traversed by  p k  share a common vertex.  

 

Definition 2.6: A cell complex C  on 
2S  is called trivalent if each vertex is the intersection of three faces.  

 

Definition 2.7: A 3-dimensional combinatorial polytope is a cell complex C  on 
2S  that satisfies the following 

conditions: 

 

(a) Each edge of C  is the intersection of exactly two faces  

(b) A nonempty intersection of two faces is either an edge or a vertex. 

(c) Each face is enclosed by not less than 3 edges. 

 

Any trivalent cell complex C  on 
2S  that satisfies the above three conditions is said to be abstract 

polyhedron. 

 

Definition 2.8: A 3D polytope is called simplicial if every face contains exactly 3 vertices. A 3D polytope is 

called a simple polytope if each vertex is the intersection of exactly 3 faces. 

 

The 1-skeleton of a polytope is the set of vertices and edges of the polytope. The skeleton of any convex 

polyhedron is a planar graph and the skeleton of any k  dimensional convex polytope is a k  connected 

graph. 

 

Theorem 2.9: (Blind and Mani) If P  is a convex polyhedron, then the graph  G P  determines the entire 

combinatorial structure of P . In other words, if two simple polyhedral have isomorphic graphs, then their 

combinatorial polyhedral are also isomorphic. 

 

Theorem 2.10: (Ernst Steinitz) A graph  G P  is a graph of a 3-dimensional polytope P  if and only if it is 

simple, planar and 3-connected. 

 

Corollary 2.11: Every 3-connected planar graph can be represented in a plane such that all the edges are 

straight lines, all the bounded regions determined by these and the union of all the bounded regions are convex 

polygons. 

         

III. New Definitions and Results 

Definition 3.1:  If the dihedral angle of an edge of a polytope is , n
n


 is a positive number, then n  is said to 

be the order of the edge. We define a trivalent vertex to be of order  , ,l m n  if the three edges at that vertex 

are of order , ,l m n .  
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Definition 3.2: An Andreev’s polytope is an abstract polytope which satisfies the following Andreev’s 

conditions [16]. 

(1)  Each dihedral angle i  is non-obtuse 0
2

i




 
  

 
. 

(2)  Whenever three distinct edges , ,i j ke e e  meet at a vertex, then  i j k      . 

(3)  Whenever  3p  intersecting edges , ,i j ke e e , then i j k      . 

(4)  Whenever  4p  intersecting edges , , ,i j k le e e e , then 2i j k l        . 

(5)  Whenever there is a four sided face bounded by edges 1 2 3 4, , ,e e e e , enumerated successively, with 

edges 12 23 34 41, , ,e e e e  entering the four  vertices (edge ije  connects to the ends of ie  and je ), then 

 1 3 12 23 34 41 3            , and 2 4 12 23 34 41 3            . 

 

 An Andreev’s polytope with coxeter dihedral angles is called a coxeter Andreev’s polytope. If the 

Andreev’s polytope is not simplex, then it can be realized in Hyperbolic space [12, 16]. 

 

In our work, we pursue the coxeter Andreev’s tetrahedron which is a simplex having no prismatic 

k  circuit  p k , no four sided face, but its dihedral angles are non-obtuse. 

 

Corollary 3.3: In a coxeter Andreev’s tetrahedron T , the order of each vertex is one of the forms: 

       2,2, 2 , 2,3,3 , 2,3,4 , 2,3,5n  . 

 

Proof: Suppose the order of one vertex of a coxeter Andreev’s tetrahedron T  is  , ,i j kn n n . By second 

condition of Andreev’s polytope: 

1 1 1
1

i j k i j kn n n n n n

  
        

So, upto permutations, the triples  , ,i j kn n n  are respectively      2,2, 2 , 2,3,3 , 2,3,4n  , 

 2,3,5 .  

 

Remarks 3.4:  

 Suppose the dihedral angles at the edges 1 2 3 4 5 6, , , , ,e e e e e e  of a coxeter Andreev’s tetrahedron are 

respectively 

1 2 3 4 5 6

, , , , ,
n n n n n n

     
 as shown in figure 3.1. 

5n 6n

2n

1v

2v 3v

4v

1e

2e

3e4e

5e
6e

3n
4n1n

 
Figure 3.1 

           Then we denote the coxeter Andreev’s tetrahedron as  1 2 3 4 5 6, , , , ,T n n n n n n . 
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 We use the notation 
knT -j  to denote the jth coxeter Andreev’s tetrahedron with k  number of edges of 

order 6n  . 

 For our convenient, we split        2,2, 2 , 2,3,3 , 2,3,4 , 2,3,5n   as: 

  2,2, 6 ,n     2,2,2 , 2,2,3 ,          2,2,4 , 2,2,5 , 2,3,3 , 2,3,4 , 2,3,5 . 

 

Theorem 3.5: Let if  and jf  be two distinct triangular faces of an abstract polyhedron T . Then  T  is a 

tetrahedron if and only if i jf f  . 

 

Proof: If T  is a tetrahedron then i jf f  gives either an edge or a vertex, therefore, i jf f  . 

Conversely, suppose i jf f  . Since T  is an abstract polyhedron, therefore T  is trivalent, that is, the 

degree of each vertex is 3. Let  1 1 2 3, ,f v v v ,  2 1 2 4, ,f v v v ,  3 2 3 4, ,f v v v  and  4 1 3 4, ,f v v v  

as shown in the figure 3.2.  

1v

2v 3v

4v

1e

2e

3e
4e

5e
6e

1f
2f

3f

4f

       

1v

2v
3v

4v

1e

2e

3e

4e

5e
6e

1f

2f

3f

4f

4v

4v
4e

5e 6e

 
Figure 3.2 

 

Now,  

        

        

1 2 1 1 2 1 3 2 2 3 1 4 3 1 3

2 3 5 2 4 2 4 4 1 4 3 4 6 3 4

, , , , ,

, , , , ,

f f e v v f f e v v f f e v v

f f e v v f f e v v f f e v v

     

     
 

And  

       1 2 4 1 1 2 3 2 1 3 4 3 2 3 4 4, , ,f f f v f f f v f f f v f f f v     

Since, i jf f  is an edge for any two faces ,i jf f  and i j kf f f  is a vertex for any three faces 

, ,i j kf f f . Therefore P  is a tetrahedron. 

Corollary 3.6: In a coxeter Andreev’s tetrahedron T , the number of edges of order 2 at one vertex is at least 1 

and at most 3. 

Proof: Clear from corollary 3.3. 

Corollary 3.7: In a coxeter Andreev’s tetrahedron T , the edges of order 6n   are disjoint. 

 

Proof: Suppose the edges of order 6n   are not disjoint. Then, there exists at least two adjacent edges ,i je e  

at one vertex v  with orders , 6i jn n  . Let ke  be another edge at vertex v . By corollary 3.6, the order of ke  

is 2 which is adjacent to the edges ,i je e .  
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v
ie je

ke

6in  6jn 

2

 
Figure 3.3 

Using second condition of Andreev’s polytope: 

  

2i jn n

  
                                                           (1) 

Since , 6i jn n  , therefore, 

5

2 6 6 2 6i jn n

      
        

This is contradiction to (1). Therefore, the edges of order 6n   are disjoint. 

 

Corollary 3.8: In a coxeter Andreev’s tetrahedron T , if an edge at one vertex is of order 6n  , then the other 

two edges must be of order 2. 

 

Proof: Let , ,i j ke e e  be three edges at one vertex v  with orders 6, ,i j kn n n  respectively. 

v
ie je

ke

6in  2jn 

2kn 

 
Figure 3.4 

 

Using second condition of Andreev’s polytope:  

i j kn n n

  
                                                       

Since 6in  , therefore: 

5

6 6i j k j k j kn n n n n n n

        
                             (2) 

Since, ,j kn n  are positive integers, therefore the inequality (3) has only the solutions 

2j kn n  . 

 

Corollary 3.9: In a coxeter Andreev’s tetrahedron T , there exists at most one edge at one vertex of order 

6n  . 

 

Proof: Suppose, there exists at least two edges at one vertex whose orders are 6n  . But by corollary 3.7, the 

edges of order 6n   are disjoint. Hence, our assumption is false and therefore, there exists at most one edge at 

one vertex of order 6n  . 
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Corollary 3.10: In a coxeter Andreev’s tetrahedron T , there are at most two edges are of order 6n  . 

 

Proof: In a tetrahedron T , there are exactly two disjoint edges upto symmetry. By corollary 3.7, the edges of 

order 6n   are disjoint. Therefore there are at most two edges of order 6n  . 

 

Theorem 3.11: In a tetrahedron T , if any three vertices are of same order, then the fourth vertex is also of 

same order. 

 

Proof: Suppose any three vertices 
1 2,v v  and 

3v  of a tetrahedron T  are of same order  1 2 3, ,n n n  up to 

symmetry. It is well known that, in a tetrahedron, any two vertices are adjacent to each other. Therefore, 1 2,v v  

and 3v  are adjacent to 4v  and suppose, they are adjacent to 4v  by the edges of order 2 3,n n  and 1n  

respectively as shown in the figure 3.5.  

3n 1n

2n

1v

2v 3v

4v

1e

2e

3e4e

5e
6e

3n
2n1n

 
Figure 3.5 

 

Then, the order of 4v  is  1 2 3, ,n n n  up to symmetry. 

 

Corollary 3.12: In a tetrahedron T , the number of same order vertices can be either 2 or 4. 

 

Proof: It is obvious that two vertices in a tetrahedron T  can have same order. Again by Theorem 3.11, if any 

three vertices are of same order, then the fourth vertex is also of same order. That is, there cannot be exactly 

three vertices of same order. Therefore, in a tetrahedron T , the number of same order vertices can be either 2 or 

4. 

Theorem 3.13: In a coxeter Andreev’s tetrahedron T , if exactly two edges are of order 6n  , then there 

exists exactly 1 such T  upto symmetry. 

 

Proof: Let T  be a coxeter Andreev’s tetrahedron. Also let T  has exactly two edges (disjoint, by corollary 3.7) 

1e  and 6e  are of orders 1 2, 6n n  . To avoid symmetry, let us assume 1 2n n . Now, since any one of the 

remaining edges 2 3 4 5, , ,e e e e   is adjacent to one of the edges 1e  and 6e . By corollary 3.8, if an edge at one 

vertex is of order 6n  , then the other two edges must be of order 2. Therefore, we have only the choice that 

the remaining edges 2 3 4 5, , ,e e e e  are of order 2. Hence, there is exactly 1 such tetrahedron T  upto symmetry 

with two edges of orders 6n  . 
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2

21n 2

2n2

1v

2v 3v

4v

1e

2e

3e4e

5e
6e

 

 2n 1 2T -1 6,2,2,2,2, 6n n    

Figure 3.6 

 

Note: For different values of 
1n  and 

2n , there will be infinite numbers of tetrahedrons, but we treat these as 

single category (coxeter Andreev’s tetrahedron with exactly two edges are of order 6n  ). 

Theorem 3.14: In a coxeter Andreev’s tetrahedron T , if exactly one edge is of order 6n  , then there exists  

exactly 4 such T  upto symmetry. 

Proof: Let T  be a coxeter Andreev’s tetrahedron. Also let T  has exactly one edge 1e  is of order 6n  . By 

corollary 3.8, if an edge at one vertex is of order 6n  , then the other two edges must be of order 2. Therefore, 

each of the edges 2 3 4 5, , ,e e e e  must be of order 2. 

2

2n 2

1v

2v 3v

4v

1e

2e

3e
4e

5e
6e

2 m

 
Figure 3.7 

 

Now, the choices of the orders of the remaining edge 6e  are 2,3,4,5m  . Therefore, there are exactly 4 such 

T  upto symmetry with exactly one edge of order 6n  . 

2

2n 2

1v

2v 3v

4v

1e

2e

3e
4e

5e
6e

2 2

                    2

2n 2

1v

2v 3v

4v

1e

2e

3e
4e

5e
6e

2 3

 

                     1nT -1 6,2,2,2,2,2n                                1nT -2 6,2,2,2,2,3n   
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2

2n 2

1v

2v 3v

4v

1e

2e

3e
4e

5e
6e

2 4

                              2

2n 2

1v

2v 3v

4v

1e

2e

3e
4e

5e
6e

2 5

 

               1nT -3 6,2,2,2,2,4n                                           1nT -4 6,2,2,2,2,5n   

Figure 3.8  

Note: For different values of n , there will be infinite numbers of tetrahedrons, but we treat these as single 

category (coxeter Andreev’s tetrahedron with exactly one edge is of order 6n  ). 

 

Theorem 3.15: In a coxeter Andreev’s tetrahedron T . If T  has no edge of order 6n  , then there are exactly 

10 such T  upto symmetry with at least one vertex is of order  2,2,2 . 

 

Proof: Let T  be a coxeter Andreev’s tetrahedron. Also let T  has no edge of order 6n   and with at least one 

vertex is of order  2,2,2 . By corollary 3.12, the number of same order vertices can be either 2 or 4.  

Therefore, there will be three cases: Case 1: all (four) the vertices are of order  2,2,2 , Case 2: two vertices 

are of order  2,2,2  and Case 3: one vertex is of order  2,2,2 . 

Case 1: All the vertices of T  are of order  2,2,2 .  

In this case, we have the following figure: 

22

2

2

1v

2v 3v

4v

1e

2e

3e
4e

5e
6e

2

2  

 0nT -1 2,2,2,2,2,2  

Figure 3.9 

 

Therefore, there is exactly 1 T  of this type up to symmetry with all the vertices of order  2,2,2 . 

Case 2: Two vertices are of order  2,2,2 .  

Suppose, the two vertices 1v  and 2v  are of order  2,2,2  as shown in the figure: 
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22

2

2

1v

2v 3v

4v

1e

2e

3e4e

5e
6e

2 m

 
Figure 3.10 

 

Then, the choices of the order of the edge 6e  will be 2,3,4,5m  . For 2m  , it falls in case 1. For 

3,4,5m  , there are exactly 3 such T  upto symmetry. 

 

22

2

2

1v

2v 3v

4v

1e

2e

3e4e

5e
6e

2 3

    

22

2

2

1v

2v 3v

4v

1e

2e

3e4e

5e
6e

2 4

      

22

2

2

1v

2v 3v

4v

1e

2e

3e4e

5e
6e

2 5

 

     0nT -2 2,2,2,2,2,3                  0nT -3 2,2,2,2,2,4                    0nT -4 2,2,2,2,2,5  

Figure 3.11 

Case 3: One vertex 1v  is of order  2,2,2 .  

In this case, we can order at most one edge out of  2 5 6, ,e e e  with 2 because, if we order two or more (all) edges 

of  2 5 6, ,e e e  by 2, then it falls in case 2 or case 1 respectively. 

 

Case 3.1: At most one 2e  is of order 2.  

Suppose 2 5 6, ,e e e  are ordered by 2, 1,m  and 2m  respectively. The possible choices for 1 2, 3,4,5m m  .  

22

2

2

1v

2v 3v

4v

1e

2e

3e4e

5e
6e

1m 2m

 
Figure 3.12  

 

To avoid symmetry, assume 1 2m m . Therefore 1 3m   and 2 3,4,5m   upto symmetry. Hence, there are 

exactly 3 such T  upto symmetry. 
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22

2

2

1v

2v 3v

4v

1e

2e

3e4e

5e
6e

3 3

          

22

2

2

1v

2v 3v

4v

1e

2e

3e4e

5e
6e

3 4

           

22

2

2

1v

2v 3v

4v

1e

2e

3e4e

5e
6e

3 5

 

       0nT -5 2,2,2,2,3,3                  0nT -6 2,2,2,2,3,4                   0nT -7 2,2,2,2,3,5  

Figure 3.13 

 

Case 3.2: No one of the edges 2 5 6, ,e e e  is ordered by 2.  

Suppose, 2 5 6, ,e e e  are ordered by 1,m 2m  and 3m  respectively. The possible choices for 

1 2 3, , 3,4,5m m m  .  

22

3m

2

1v

2v 3v

4v

1e

2e

3e4e

5e
6e

1m

2m

 
Figure 3.14 

 

To avoid symmetry, let us assume 1 2 3m m m  . Therefore, the orders of  2 5 6, ,e e e  are 

     3,3,3 , 3,3,4 , 3,3,5  upto symmetry. Hence, there are exactly 3 such T  upto symmetry. 
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          0nT -8 2,2,2,3,3,3                0nT -9 2,2,2,3,3,4               0nT -10 2,2,2,3,3,5  

 

Figure 3.15 

 

Theorem 3.16: In a coxeter Andreev’s tetrahedron T . If T  has no edge of order 6n  , then there are exactly 

8 such T  upto symmetry with at least one vertex is of order  2,2,3  and no vertex is of order  2,2,2 . 

 

Proof: Let T  be a coxeter Andreev’s tetrahedron. Also let T  has no edge of order 6n  , at least one vertex is 

of order  2,2,3  and no vertex is of order  2,2,2 . By corollary 3.12, the number of same order vertices can 
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be either 2 or 4. Therefore, there will be three cases: Case 1: all (four) the vertices are of order  2,2,3 , Case 

2: two vertices are of order  2,2,3  and Case 3: one vertex is of order  2,2,3 . 

 

Case 1: All the vertices of T  are of order  2,2,3 .  

In this case, we have the following figure: 
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 0nT -11 2,2,3,2,3,2  

Figure 3.16 

 

Therefore, there are exactly 1 such T  upto symmetry. 

 

Case 2: Two vertices are of order  2,2,3 .  

In this case, we can have the two vertices of order  2,2,3  with either adjacent edges of order 3 or disjoint 

edges of order 3 or they share a common edge of order 3. 

 

Case 2.1: Two vertices of order  2,2,3  with adjacent edges of order 3. 

Suppose, the vertices 1v  and 2v  are ordered by  2,2,3 , where the edges 2e  and 3e   of order 3 are adjacent. 

Then, the only possibility for 6e  is of order 2 and then, the order of 4v  becomes  2,2,2 , which cannot be 

taken by assumption. 

 

Case 2.2: Two vertices of order  2,2,3  with disjoint edges of order 3 

Suppose, the vertices 1v  and 2v  are ordered by  2,2,3 , where the edges 3e  and 5e  of order 3 are disjoint. 

Then, the possibilities of orders for 6e  are 2,3,4,5m  . 
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Figure 3.17 

 

For 2m  , it falls in case 1. For 3,4,5m  , the number of T  of this type is exactly 3 up to symmetry. 
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          0nT -12 2,2,3,2,3,3              0nT -13 2,2,3,2,3,4             0nT -14 2,2,3,2,3,5  

Figure 3.18 

 

Case 2.3: Two vertices of order  2,2,3  with common edge of order 3. 

Suppose the vertices 1v  and 3v  are ordered by  2,2,3  sharing the common edge 3e  of order 3. Then, the 

possibilities of orders for 5e  are 2,3,4,5m  . 
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Figure 3.19 

 

For 2m  , the order of 2v  becomes  2,2,2 , which cannot be taken by assumption. 

For 3m  , it falls in case 1. 

For 4,5m  , there are exactly 2 T  of this type upto symmetry 
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                        0nT -15 2,2,3,2,4,2                                 0nT -16 2,2,3,2,5,2  

Figure 3.20 

 

Case 3: One vertex 1v  is of order  2,2,3 .  

By corollary 3.6, the number of edges of order 2 at one vertex is at least 1 and at most 3. Therefore, at 3v , there 

exists at least one edge 2e  of order 2 upto symmetry. If 6e  is also of order 2, then it falls in case 2. Suppose 5e  

and 6e  are ordered by 1m  and 2m  respectively.  
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Figure 3.21 

 

Then, the possibilities for 1 2,3,4,5m  . If 1 2m  , the order of 2v  becomes  2,2,2 , which cannot be 

taken by assumption. For 1 3m  , it falls in case 2. Therefore, 1 4,5m  .  

Now, the possibilities for 2 3,4,5m  . For 2 3m  , we have exactly 2 such T  upto symmetry. 
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                         0nT -17 2,2,3,2,4,3                             0nT -18 2,2,3,2,5,3  

Figure 3.22 

 

For 2 4,5m  , the order of the vertex 4v  becomes      2,4,4 , 2,4,5 , 2,5,5  respectively, which are not 

possible by corollary 3.3. 

Theorem 3.17: In a coxeter Andreev’s tetrahedron T . If T  has no edge of order 6n  , then there are exactly 

4 such T  upto symmetry with at least one vertex is of order   2,2,4  and no vertex is of order of the forms 

   2,2,2 , 2,2,3 . 

 

Proof: Let T  be a coxeter Andreev’s tetrahedron. Also let T  has no edge of order 6n  , at least one vertex is 

of order  2,2,4  and no vertex is of order    2,2,2 , 2,2,3 . By corollary 3.12, the number of same order 

vertices can be either 2 or 4. Therefore, there will be three cases: Case 1: all (four) the vertices are of order 

 2,2,4 , Case 2: two vertices are of order  2,2,4  and Case 3: one vertex is of order  2,2,4 . 

 

Case 1: All the vertices of T  are of order  2,2,4 . 

In this case, there are exactly 1 T  of this type upto symmetry. 
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 0nT -19 2,4,2,4,2,2  

Figure 3.23  

 

Case 2: Two vertices are of order  2,2,4 .  

If the two vertices of order  2,2,4  are with adjacent edges of order 4, then the order of the vertex at which 

the two edges of order 4 are adjacent becomes  2,4,4n  . This is not possible as it is not in coxeter 

Andreev’s tetrahedron. Therefore, the two vertices of order  2,2,4  cannot be with adjacent edges of order 4 

and hence, we can have the two vertices of order  2,2,4  with either disjoint edges of order 4 or common 

edge of order 4. 

 

Case 2.1: Two vertices of order  2,2,4  with disjoint edges of order 4.  

Suppose the vertices 1v  and 2v  are of order  2,2,4  with disjoint edges 3e  and 5e  of order 4.  
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Figure 3.24  

 

Then, the possibilities of orders for 6e  are  2,3,4,5m  . For 2m  , it falls in case 1. For 3m  , we have 

exactly 1 T  of this type upto symmetry. 
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 0nT -20 2,2,4,2,4,3  

Figure 3.25 

  

For 4,5m  , the order of 3v  becomes    2,4,4 , 2,4,5  respectively which are not in coxeter Andreev’s 

tetrahedron. 

 

Case 2.2: Two vertices of order  2,2,4  with common edge of order 4. 

Suppose the vertices 1v  and 3v  are of order  2,2,4  with common edge 3e  of order 4.  
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Figure 3.26 

 

Then the possibilities of order for 5e  are 2,3,4,5m  . For 2,3m  , the order of 2v  becomes 

   2,2,2 , 2,2,3  respectively which are not taken by assumption. For 4m  , the order of 
2v  becomes 

 2,2,4  and it falls in case 1. For 5m  , we have exactly 1 T  of this type upto symmetry. 
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 0nT -21 2,2,4,2,5,2  

Figure 3.27  

 

Case 3: One vertex 1v  is of order  2,2,4 .  

By corollary 3.6, the number of edges of order 2 at one vertex is at least 1 and at most 3. Therefore, at 3v , there 

exists at least one edge 2e  of order 2 upto symmetry. If 6e  is also of order 2, then it falls in case 2. 

Suppose 5e  and 6e  are ordered by 1m  and 2m  respectively.  
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Figure 3.28  

 

Then the possibilities for 1 2,3,4,5m  . If 1 2,3m  , the order of 2v  becomes  2,2,2  and  2,2,3  

respectively, which are not taken by assumption. For 1 4m  , it falls in case 2. Therefore 1 5m  . Again, the 

possibilities for 2 2,3,4,5m  . For 2 2m  , it falls in case 2. Therefore 2 3m   and hence there are exactly 

1 CHC tetrahedron T  upto symmetry. 
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 0nT -22 2,2,4,2,5,3  

Figure 3.29  

For 2 4,5m  , the order of the vertex 4v  becomes    2,4,5 , 2,5,5  respectively, which are not possible by 

corollary 3.3. 

Theorem 3.18: In a coxeter Andreev’s tetrahedron T . If T  has no edge of order 6n  , then there are exactly 

2 such T  upto symmetry with at least one vertex is of order   2,2,5  and no vertex is of order of the forms 

     2,2,2 , 2,2,3 , 2,2,4 . 

Proof: Let T  be a coxeter Andreev’s tetrahedron. Also let T  has no edge of order 6n  , at least one vertex is 

of order  2,2,5  and no vertex is of order      2,2,2 , 2,2,3 , 2,2,4 . By corollary 3.12, the number of 

same order vertices can be either 2 or 4. Therefore, there will be three cases: Case 1: all (four) the vertices are of 

order  2,2,5 , Case 2: two vertices are of order  2,2,5  and Case 3: one vertex is of order  2,2,5 . 

Case 1: All the vertices of T  are of order  2,2,5 . 

In this case, we have exactly 1 T  of this type upto symmetry. 
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 0nT -23 2,2,5,2,5,2  

Figure 3.30  

Case 2: Two vertices are of order  2,2,5 . 

If the two vertices of order  2,2,5  are with adjacent edges of order 5, then the order of the vertex at which 

the two edges of order 5 are adjacent becomes  2,5,5n  . This is not possible by corollary 3.3. Therefore, 

the two vertices of order  2,2,5  cannot be with adjacent edges of order 5 and hence, we can have the two 

vertices of order  2,2,5  with either disjoint edges of order 5 or common edge of order 5. 

 

Case 2.1: Two vertices of order  2,2,5  with disjoint edges of order 5.  

Suppose the vertices 1v  and 2v  are of order  2,2,5  with disjoint edges 3e  and 5e  of order 5. Then, the 

possibilities of orders for 6e  are  2,3,4,5m  .  
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Figure 3.31 

 

For 2m  , it falls in case 1. For 3m  , we have exactly 1 T  of this type upto symmetry. 
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Figure 3.32 

 

For 4,5m  , the order of 3v  becomes    2,4,5 , 2,5,5  respectively which are not possible by corollary 

3.3. 

 

Case 2.2: Two vertices of order  2,2,5  with common edge of order 5. 

Suppose the vertices 1v  and 3v  are of order  2,2,5  with common edge 3e  of order 5.  
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Figure 3.33 

 

Then the possibilities of order for 5e  are 2,3,4,5m  . For 2,3,4m  , the order of 2v  becomes 

     2,2,2 , 2,2,3 , 2,2,4  respectively which are not taken by assumption. For 5m  , it falls in case 1. 

 

Case 3: One vertex 1v  is of order  2,2,5 .  



Properties of Coxeter Andreev’s Tetrahedrons 

www.iosrjournals.org                                                     98 | Page 

By corollary 3.6, the number of edges of order 2 at one vertex is at least 1 and at most 3. Therefore, at 
3v , there 

exists at least one edge 
2e  of order 2 upto symmetry. If 

6e  is also of order 2, then it falls in case 2. 

Suppose 
5e  and 

6e  are ordered by 1m  and 
2m  respectively.  
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Figure 3.34 

 

Then the possibilities for 1 2,3,4,5m  . For 1 2,3,4m  , the order of 2v  becomes 

     2,2,2 , 2,2,3 , 2,2,4 respectively, which are not taken by assumption. For 1 5m  , it falls in case 2.  

Therefore, there is no tetrahedron of this type. 

 

Theorem 3.19: In a coxeter Andreev’s tetrahedron T . If T  has no edge of order 6n  , then there are exactly 

3 such T  upto symmetry with at least one vertex is of order   2,3,3  and no vertex is of order of the forms 

       2,2,2 , 2,2,3 , 2,2,4 , 2,2,5 . 

 

Proof: Let T  be a coxeter Andreev’s tetrahedron. Also let T  has no edge of order 6n  , at least one vertex is 

of order  2,3,3  and no vertex is of order        2,2,2 , 2,2,3 , 2,2,4 , 2,2,5 . By corollary 3.12, the 

number of same order vertices can be either 2 or 4. Therefore, there will be three cases: Case 1: all (four) the 

vertices are of order  2,3,3 , Case 2: two vertices are of order  2,3,3  and Case 3: one vertex is of order 

 2,3,3 . 

Case 1: All the vertices of T  are of order  2,3,3 . 

In this case, there are exactly one T  of this type upto symmetry. 
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 0nT -25 2,3,3,3,3,2  

Figure 3.35 

 

Case 2: Two vertices are of order  2,3,3 . 

If the two vertices of order  2,3,3  are with adjacent edges of order 2, then the order of the vertex at which the 

two edges of order 2 are adjacent becomes  2,2, 2n  . This is not taken by assumption. Therefore, the two 
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vertices of order  2,3,3  cannot be with adjacent edges of order 2 and hence, we can have the two vertices of 

order  2,3,3  with either disjoint edges of order 2 or common edge of order 2 

 

Case 2.1: Two vertices of order  2,3,3  with disjoint edges of order 2.  

Suppose the vertices 1v  and 
3v  are of order  2,3,3  with disjoint edges 1e  and 

6e  of order 2. Then, the 

possibilities of orders for 5e  are  2,3,4,5m  .  
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Figure 3.36 

For 2m  , the order of 2v  becomes  2,2,2  which is not taken by assumption. For 3m  , it falls in case 1. 

For 4,5m  , there are exactly 2 T  of this type upto symmetry. 
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                             0nT -26 2,3,3,3,4,2                       0nT -27 2,3,3,3,5,2  

Figure 3.37 

Case 2.2: Two vertices of order  2,3,3  with common edge of order 2. 

Suppose the vertices 1v  and 2v  are of order  2,3,3  with common edge 1e  of order 2.  
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Figure 3.38 
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Then the possibilities of order for 
6e  are 2,3,4,5m  . For 2m  , it falls in case 1. For 3,4,5m  , the 

order of 3v  becomes      3,3,3 , 3,3,4 , 3,3,5  respectively, which are not possible by corollary 3.3. Hence 

there is no tetrahedron of this type. 

 

Case 3: One vertex 1v  is of order  2,3,3 .  

By corollary 3.6, the number of edges of order 2 at one vertex is at least 1 and at most 3. Also, the edges of 

order 2 must be disjoint as we do not have the vertices of the forms:        2,2,2 , 2,2,3 , 2,2,4 , 2,2,5 . 

Therefore at one vertex, there are exactly one edge of order 2. If 1v  is of order  2,3,3  with 1e  is of order 2, 

then 6e  must be of order 2. Suppose, the order of the edges 2e  and 5e  are 1m  and 2m  respectively. 
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Figure 3.39 

 

To avoid symmetry, assume 1 2m m . Therefore 1 3m   and 2 4,5m  upto symmetry. But these falls in 

case 2. Hence, there is no such T  of this type. 

                              

Theorem 3.20: In a coxeter Andreev’s tetrahedron T . If T  has no edge of order 6n  , then there are exactly 

2 such T  upto symmetry with at least one vertex is of order   2,3,4  and no vertex is of order of the forms 

       2,2,2 , 2,2,3 , 2,2,4 , 2,2,5 , 

 2,3,3 . 

 

Proof: Let T  be a coxeter Andreev’s tetrahedron. Also let T  has no edge of order 6n  , at least one vertex is 

of order  2,3,4  and no vertex is of order        2,2,2 , 2,2,3 , 2,2,4 , 2,2,5 ,  

 2,3,3 . By corollary 3.12, the number of same order vertices can be either 2 or 4. Therefore, there will be 

three cases: Case 1: all (four) the vertices are of order  2,3,4 , Case 2: two vertices are of order  2,3,4  and 

Case 3: one vertex is of order  2,3,4 . 

 

Case 1: All the vertices of T  are of order  2,3,4 . 

In this case, we have exactly 1 T  of this type upto symmetry. 
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Figure 3.40 

 

Case 2: Two vertices are of order  2,3,4 .  

If the two vertices of order  2,3,4  are with adjacent edges of order 2, then the order of the vertex at which 

the two edges of order 2 are adjacent becomes  2,2, 2n  . This is not taken by assumption. Therefore, the 

two vertices of order  2,3,4  cannot be with adjacent edges of order 2 and hence, we can have the two 

vertices of order  2,3,4  with either disjoint edges of order 2 or common edge of order 2. 

 

Case 2.1: Two vertices of order  2,3,4  with disjoint edges of order 2.  

Suppose the vertices 1v  and 3v  are of order  2,3,4  with disjoint edges 1e  and 6e  of order 2.  
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Figure 3.41 

 

Then the possibilities of orders for 5e  are  2,3,4,5m  . For 2,3m  , the order of 2v  becomes 

   2,2,3 , 2,3,3  respectively, which are not taken by assumption. For 4m  , it falls in case 1. For 5m  , 

there are exactly 1 such T  of this type upto symmetry. 
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Figure 3.42 

 

Case 2.2: Two vertices of order  2,3,4  with common edge of order 2. 

Suppose the vertices 1v  and 2v  are of order  2,3,4  with common edge 1e  of order 2.  
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Figure 3.43 

 

In the first figure, we do not have any choice for m . In the second figure, we have 2m   and it falls in case 1. 

 

Case 3: One vertex 1v  is of order  2,3,4 .  

By corollary 3.6, the number of edges of order 2 at one vertex is at least 1 and at most 3. Also, the edges of 

order 2 must be disjoint as we do not have the vertices of the forms:        2,2,2 , 2,2,3 , 2,2,4 , 2,2,5 . 

Therefore at one vertex, there are exactly one edge of order 2. If 1v  is of order  2,3,4  with 1e  is of order 2, 

then 6e  must be of order 2. Suppose, the order of the edges 2e  and 5e  are 1m  and 2m  respectively. 
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Figure 3.44 

 

To avoid symmetry, assume 1 2m m . Therefore, 1 3m   and 2 3,4,5m   upto symmetry. For 1 3m   and 

2 3m  , the order of 2v  becomes  2,3,3 , which cannot be taken by assumption and 1 3m  , 2 4m   as 

well as 1 3m  , 2 5m   lead to case 2. Hence, there is no such T  of this type. 

 

Theorem 3.21: In a coxeter Andreev’s tetrahedron T . If T  has no edge of order 6n  , then there are exactly 

1 such T  upto symmetry with at least one vertex is of order   2,3,5  and no vertex is of order of the forms 

       2,2,2 , 2,2,3 , 2,2,4 , 2,2,5 , 

   2,3,3 , 2,3,4 . 

 

Proof: Let T  be a coxeter Andreev’s tetrahedron T . Also let T  has no edge of order 6n  , at least one 

vertex is of order  2,3,5  and no vertex is of order      2,2,2 , 2,2,3 , 2,2,4 ,  
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     2,2,5 , 2,3,3 , 2,3,4 . By corollary 3.12, the number of same order vertices can be either 2 or 4. 

Therefore, there will be three cases: Case 1: all (four) the vertices are of order  2,3,5 , Case 2: two vertices 

are of order  2,3,5  and Case 3: one vertex is of order  2,3,5 . 

 

Case 1: All the vertices of T  are of order  2,3,5 . 

In this case, we have exactly 1 T  upto symmetry. 
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Figure 3.45  

 

Case 2: Two vertices are of order  2,3,5 .  

If the two vertices of order  2,3,5  are with adjacent edges of order 2, then the order of the vertex at which the 

two edges of order 2 are adjacent becomes  2,2, 2n  . This cannot be taken by assumption. Therefore, the 

two vertices of order  2,3,5  cannot be with adjacent edges of order 2 and hence, we can have the two vertices 

of order  2,3,5  with either disjoint edges of order 2 or common edge of order 2 

 

Case 2.1: Two vertices of order  2,3,5  with disjoint edges of order 2.  

Suppose the vertices 1v  and 3v  are of order  2,3,5  with disjoint edges 1e  and 6e  of order 2.  
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Figure 3.46 

 

Then the possibilities of orders for 5e  are 2,3,4,5m  . For 2,3,4m  , the order of 2v  becomes 

     2,2,3 , 2,3,3 , 2,3,4  respectively, which cannot be taken by assumption. For 5m  , it falls in case 1. 

Hence, there is no such T  of this type. 

 

Case 2.2: Two vertices of order  2,3,5  with common edge of order 2. 
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Suppose the vertices 1v  and 2v  are of order  2,3,5  with common edge 1e  of order 2 upto symmetry.  

3 5

m

2

1v

2v 3v

4v

1e

2e

3e
4e

5e 6e

3

5

                                     
 

Figure 3.47 

 

Then the only possibility of order for 
6e  is 2m   and this falls in case 1. Hence, there is no such T  of this 

type. 

Case 3: One vertex 1v  is of order  2,3,5 .  

By corollary 3.6, the number of edges of order 2 at one vertex is at least 1 and at most 3. Also, the edges of 

order 2 must be disjoint as we do not have the vertices of the forms:        2,2,2 , 2,2,3 , 2,2,4 , 2,2,5 . 

Therefore at one vertex, there are exactly one edge of order 2. If 1v  is of order  2,3,5  with 1e  is of order 2, 

then 6e  must be of order 2. Suppose, the order of the edges 2e  and 5e  are 1m  and 2m  respectively. 
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Figure 3.48 

 

To avoid symmetry, assume 1 2m m . Therefore, 1 3m   and 2 3,4,5m   upto symmetry. For 1 3m  , 

2 3m   and for 1 3m  , 2 4m  , the order of 2v  becomes  2,3,3  and   2,3,4  respectively, which 

cannot be taken by assumption. For 1 3m  , 2 5m  , it falls in case 1. Hence, there is no such T  of this type. 

 

From theorem 3.15 to theorem 3.21, the total number of coxeter Andreev’s tetrahedrons with no edge of 

order 6n   upto symmetry is 10 8 4 2 3 2 1 30       . 

 

IV. Conclusions 
In this article, it has been found that there are exactly one, four and thirty coxeter Andreev’s 

tetrahedrons having respectively two edges of order 6n  , one edge of order 6n   and no edge of order 

6n  , n N  upto symmetry. These tetrahedrons may not be realized in Hyperbolic space. We can extend 

our research to find the coxeter Andreev’s tetrahedrons which can be realized in Hyperbolic space. This research 

can also be extended to other compact as well as non-compact polytopes in spaces of different dimensions. 
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