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Abstract: This work presents numerical methods for solving initial value problems in ordinary differential 

equations. Euler's method is presented from the point of view of Taylor's algorithm which considerably 

simplifies the rigorous analysis while Runge Kutta method attempts to obtain greater accuracy and at the same 

time avoid the need for higher derivatives by evaluating the given function at selected points on each 

subinterval. We discuss the stability and convergence of the two methods under consideration and result 

obtained is compared to the exact solution. The error incurred is undertaken to determine the accuracy and 

consistency of the two methods. 
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I. Introduction 
Differential equations can describe nearly all system undergone change. Many mathematicians have studied the 

nature of these equations and many complicated systems can be described quite precisely with compact 

mathematical expressions. However, many systems involving differential equations are so complex. It is in these 

complex systems where computer simulations and numerical approximations are useful. The techniques for 

solving differential equations based on numerical approximations were developed before programmable 

computers existed. The problem of solving ordinary differential equations is classified into initial value and 

boundary value problems, depending on the conditions specified at the end points of the domain. There are 

numerous methods that produce numerical approximations to solution of initial value problems in ordinary 
differential equations such as Euler's method which was the oldest and simplest method originated by Leonhard 

Euler in 1768, Improved Euler's method and Runge Kutta methods described by Carl Runge and Martin Kutta in 

1895 and 1905 respectively. There are many excellent and exhaustive texts on this subject that may be 

consulted, such as [8], [4], [6], [5], and [1] just to mention few. In this work we present the practical use and the 

convergence of Euler method and Runge Kutta method for solving initial value problems in ordinary differential 

equations. 

 

II. Numerical Method 
Numerical method forms an important part of solving initial value problems in ordinary differential equations, 
most especially in cases where there is no closed form solution. Next we present two numerical methods namely 

Euler's Method and Runge Kutta method. 

We present here the derivation of Euler's method for generating, numerically, approximate solutions to the 

initial value problem [2] 

00 )(),,( yxyyxfy                                                                                                                                   (1) 

                                                                           

2.1   Runge Kutta Method 

Runge Kutta method is a technique for approximating the solution of ordinary differential equation. This 

technique was developed around 1900 by the mathematicians Carl Runge and Wilhelm Kutta. Runge Kutta 

method is popular because it is efficient and used in most computer programs for differential equation.  

The following are the orders of Runge Kutta Method as listed below: 

 Runge Kutta method of order one is called Euler's method. 

 Runge Kutta method of order two is the same as modified Euler’s or Heun's Method. 

 The fourth order Runge Kutta method called classical Runge Kutta method. 

In this paper, we shall only consider the fourth order Runge Kutta method. 

 

 2.2   Derivation of the Fourth Order Runge Kutta Method 

We shall derive here the simplest of the Runge method. A formula of the following form is sought: 

211 bkakyy nn                                                                                                                                        (2) 
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Where ),(1 nn yxhfk  , ),( 12 kyhxhfk nn   and  ,,,ba are constants to be determined so that 

(2) will agree with the Taylor algorithm.  Expanding )( 1nxy in a Taylor series of order
3h , we obtain  
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It should be noted that the expansions 

),( yxfy  , fffy yx  and fffffffffy yyxyyxyxx

222  . The subscript n means 

that all functions involved are to be evaluated at ),( nn yx . 

On the other hand, using Taylor’s expansion for functions of two variables, we find that  
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, all the derivatives above are evaluated at ),( nn yx . If we now substitute this expression for 2k into (2) and 

note that ),(1 nn yxhfk  , we find upon rearrangement in powers of h  and by setting 
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This method (3) is undoubtedly the most popular of all Runge Kutta methods. Indeed it is frequently referred to 

as “the fourth order Runge Kutta method”. Many numerical analyst rely on (3), because it is quite stable, 

accurate and easy to program. 

 

2.3   Error Estimate for Runge Kutta Method 

For all one step methods like Runge Kutta Method, the conceptually-simplest definition of local truncation error 

is that it is the error committed in the most recent integration step, on a single integration step. We denote the 

solution to the initial value problem (1) by )0(),0(, yxx . We have noted that the truncation error in 
thp  order 

Runge Kutta method is
1pkp , where k is some constant. Bounds on k  for 4,3,2p  also exist. The 

derivation of these bounds is not a simple matter and moreover, their evaluation requires some quantities. One 

of the serious draw backs of Runge Kutta method is error estimation. 

 

2.4   Euler’s Method 

Euler’s method is also called tangent line method and is the simplest numerical method for solving initial value 

problem in ordinary differential equation, particularly suitable for quick programming which was originated by 

Leonhard Euler in 1768. This method subdivided into three namely,  

 Forward Euler’s method. 

 Improved Euler’s method. 

 Backward Euler’s method. 

In this work we shall only consider forward Euler’s method. 

 

2.5   Derivation of Euler’s method 

We present below the derivation of Euler’s method for generating, numerically, approximate solutions to the 

initial value problem (1), where 0x and 0y are initial values for x  and y  respectively. Our aim is to determine 

(approximately) the unknown function )(xy for 0xx  . We are told explicitly the value of )( 0xy , namely 0y , 
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using the given differential equation (1), we can also determine the instantaneous rate of change of y at 

point 0x  

))(,()( 000 xyxfxy   = ),( 00 yxf
                                                                                                             (4)

 

If the rate of change of )(xy were to remain ),( 00 yxf for all point x , then )(xy would exactly 

))(,( 0000 xxyxfy  .The rate of change of )(xy does not remain ),( 00 yxf  for all x , but it is 

reasonable to expect that it remains close to ),( 00 yxf  for x close to 0x . If this is the case, then the value of 

)(xy  will remain close to ))(,( 0000 xxyxfy  for x close to 0x , for small number h , we have 

hxx  01  (5)                                                                                                                                          

))(,( 010001 xxyxfyy 
                                                                                                                         (6)

 

       = ),( 000 yxhfy 
                                                                                                        

 

Where 01 xxh  and is called the step size. 

By the above argument, 

11)( yxy 
                                                                                                                                                           (7)                                                             

 

Repeating the above process, we have at point 1x  as follows 

hxx  12                                                                                                                                                          (8)
 

))(,( 121112 xxyxfyy   

        = ),( 111 yxhfy 
                                                                                                                                        (9)

 

We have  

22 )( yxy 
                                                                                                                                                        (10)

 

Then define for ,...5,4,3,2,1,0n , we have 

nhxxn  0                                                                                                                                                     (11)
 

Suppose that, for some value of n , we are already computed an approximate value ny for )( nxy . Then  

The rate of change of )(xy  for x  to nx   is ),())(,())(,( nnnn yxfxyxfxyxf 
 

where ))(,()( nnnnn xxyxfyxy  . 

Thus, 

),()( 11 nnnnn yxhfyyxy                                                                                                                  (12)
 

Hence, 

),(1 nnnn yxhfyy                                                                                                                                    (13)
 

 Equation (13) is called Euler’s method. 

From (13), we have 
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2.6   Truncation Errors for Euler’s Method 

Numerical stability and errors are discussed in depth in [3] and [7]. There are two types of errors arise in 
numerical methods namely truncation error which arises primarily from a discretization process and round off 

error which arises from the finiteness of number representations in the computer. Refining a mesh to reduce the 

truncation error often causes the round off error to increase. To estimate the truncation error for Euler’s method, 

we first recall Taylor’s theorem with remainder, which states that a function )(xf can be expanded in a series 

about the point ax   
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The last term of (15) is referred to as the remainder term. Where .ax    
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In (15), let 1 nxx and ax  , in which  
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                                                                                                  (16) 

Since y satisfies the ordinary differential equation in (1), which can be written as  

))(,()( nnn xyxfxy 
                                                                                                                                   (17)

 

Hence, 
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                                                                                      (18)

 

By considering (18) to Euler’s approximation in (13), it is clear that Euler’s method is obtained by omitting the 

remainder term )(
2

1 2

nyh  in the Taylor expansion of )( 1nxy at the point nx . The omitted term accounts for 

the truncation error in Euler’s method at each step. 

 

2.7   Convergence of Euler’s Method 

The necessary and sufficient conditions for a numerical method to be convergent are stability and consistency.  

Stability deals with growth or decay of error as numerical computation progresses.  Now we state the following 

theorem to discuss the convergence of Euler’s method. 

Theorem: If ),( yxf   satisfies a Lipschitz condition in y and is continuous in x for ax 0 and defined a 

sequence ny , where kn ,...,2,1 and if )0(0 yy  , then )(xyyn  as n uniformly in x  where 

)(xy is the solution of the initial value problem (1). 

 Proof: we shall start the proof of the above theorem by deriving a bound for the error 

)( nnn xyye 
                                                                                                                                           (19)

 

Where ny and )( nxy are called numerical and exact values respectively. We shall also show that this bound 

can be made arbitrarily small. If a bound for the error depends only on the knowledge of the problem but not on 

its solution )(xy  , it is called an a priori bound. If, on the other hand, knowledge of the properties of the 

solution is required, its error bound is referred to as an a posteriori bound. 

To get an a priori bound, let us write 

nnnnn tyxhfxyxy  ),()()( 1                                                                                                                (20)
 

Where nt is called the local truncation error. It is the amount by which the solution fails to satisfy the difference 

method. Subtracting (20) from (13), we get  

nnnnnnn txyxfyxfhee  ))](,(),([1                                                                                             (21)
 

Let us write  

))(,(),( nnnnnn xyxfyxfMe 
                                                                                                              (22)

 

Substituting (21) into (22), then  

)1(1 nnn hMee                                                                                                                                          (23) 

This is the difference equation for ne . The error 0e is known, so it can be solved if we know nM and nt . We 

have a bound of the Lipschitz constant M for nM . Suppose we also have ntT  . Then we have 

  ThMee nn  11                                                                                                                                  (24)
 

To proceed further, we need the following lemma. 

Lemma: If ne  satisfies (24) and anh 0 , then   
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Lemma: The first inequality of (25) follows by induction. It is trivially true for 0n . Assuming that it is true 

for n , we have from (24) 
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Hence (25) is true for 1n and thus for all n . 

The second inequality in (25) follows from the fact that anh  and for 0hM ,   MhehM 1  so 

that   MaMnhn
eehM 1 , proving the lemma. 

To continue the proof of the theorem, we need to investigateT , the bound on the local truncation error.  
From (20), we have 

                             )(,)()( 1 nnnnn xyxhfxyxyt    

By the Mean value theorem, we get for 10  ,  

        ))(,())(,( nnnn xyxfxyhxfh  ))(,())(,( nnnn xyhxfhxyhxfh    

  ))(,())(,( nnnn xyxfxyhxfh  )()( nn xyhxyh 
                                                          (27)

 

The last term can be treated by the Mean value theorem to get a bound ,)( 22 MZhgyhM  where  

)(max xyZ  , the inequality exists because of the continuity of y and f in a closed region. The treatment 

of the first term in (27) depends on our hypothesis. If we are prepared to assume that ),( yxf also satisfies a 

Lipschitz condition in x , we can bound the first term in (27) by 
2hL , where L is the Lipschitz constant for 

)(xf . Consequently, TMZLhtn  )(2
and so from (25), we get 
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Thus the numerical solution converges as 0h , if .00 e
 

III. Numerical Experiments 
In order to confirm the applicability and suitability of the methods for solution of initial value problems in 
ordinary differential equations, it was computerized in Fortran Programing language and implemented on a 

macro-computer adopting double precision arithmetic. The performance of the methods was checked by 

comparing their accuracy and efficiency. The efficiency was determined from the number iterations counts and 

number of functions evaluations per step while the accuracy is determined by the size of the discretization error 

estimated from the difference between the exact solution and the numerical approximations. 

Example 1: 

The first problem considered in this illustration is the linear first order initial value problem
21 yy  , 

2)0( y  with step size 1.0h on the interval 10  x whose exact solution is given by xxy tan)(  . 

The results obtained shown in Table 1 and Table 2, the comparison of the methods to the exact solution and the 

error incurred respectively. 

Example 2: 

We use Euler’s method to approximate the solution of the initial value problem 2)0(,  yxyy , with 

step size 1.0h on the interval 10  x whose exact solution is given by 1)(  xexy x
. The results 

obtained shown in Table 3 and Table 4, the comparison of the methods to the exact solution and the error 

incurred respectively. 
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IV. Table of Results 
Table 1: The Comparative Result Analysis of Runge Kutta Method and Euler’s Method 

n  
nx  )( nxy  nRy  nEy  

0 0.0 0.0000 0.0000 0.0000 

1 0.1 0.1003 0.1003 0.1000 

2 0.2 0.2027 0.2027 0.2010 

3 0.3 0.3093 0.3092 0.3050 

4 0.4 0.4227 0.4228 0.4143 

5 0.5 0.5463 0.5463 0.5315 

6 0.6 0.6841 0.6841 0.6598 

7 0.7 0.8422 0.8420 0.8033 

8 0.8 1.0296 1.0296 0.9678 

9 0.9 1.2601 1.2600 1.1615 

10 1.0 1.5574 1.5574 1.3964 

 

Table 2: Error incurred in Runge Kutta Method and Euler’s Method 
n  

nx  nnnR yxye  )(

 

nnnE yxye  )(

 

0 0.0 0.0000 0.0000 

1 0.1 0.0000 0.0003 

2 0.2 0.0000 0.0017 

3 0.3 0.0001 0.0043 

4 0.4 0.0000 0.0084 

5 0.5 0.0000 0.0148 

6 0.6 0.0000 0.0243 

7 0.7 0.0002 0.0389 

8 0.8 0.0000 0.0618 

9 0.9 0.0001 0.0986 

10 1.0 0.0000 0.1610 

 

Table 3: The Comparative Result Analysis of Runge Kutta Method and Euler’s Method 
n  

nx  )( nxy  nRy  nEy  

0 0.0 2.0000 2.0000 2.0000 

1 0.1 2.2052 2.2051 2.2000 

2 0.2 2.4214 2.4213 2.4100 

3 0.3 2.6498 2.6497 2.6310 

4 0.4 2.8918 2.8918 2.8641 

5 0.5 3.1487 3.1486 3.1105 

6 0.6 3.4221 3.4221 3.3716 

7 0.7 3.7137 3.7137 3.6487 

8 0.8 4.0255 4.0255 3.9436 

9 0.9 4.3596 4.3596 4.2579 

10 1.0 4.7182 4.7182 4.5937 
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Table 4:  Error incurred in Runge Kutta Method and Euler’s Method 

n  
nx  nnnR yxye  )(  nnnE yxye  )(  

0 0.0 0.0000 0.0000 

1 0.1 0.0001 0.0052 

2 0.2 0.0001 0.0114 

3 0.3 0.0001 0.0188 

4 0.4 0.0000 0.0277 

5 0.5 0.0001 0.0382 

6 0.6 0.0000 0.0505 

7 0.7 0.0000 0.0650 

8 0.8 0.0000 0.0819 

9 0.9 0.0000 0.1017 

10 1.0 0.0000 0.1245 

 

V. Discussion of Results 
We notice that in Tables 2 and 4, the error incurred in Euler's method is greater than that of Runge Kutta method 

and the same time get larger as n increases. Hence Runge Kutta method is more accurate than its counterpart 

Euler's method as we can see from Tables 1 and 3.  

 

VI. Conclusion 
We have in our disposal two numerical methods for solving initial value problems in ordinary differential 

equations. In general, numerical method has its own advantages and disadvantages of use: Euler's method is 

therefore best reserved for simple preferably, recursive derivatives that can be represented by few terms. It is 

simple to implement and simplifies rigorous analysis. The major disadvantages of Euler method are the 
tiresome, sometimes impossible calculation of higher derivatives and the slow convergence of the series for 

some functions which involves terms of opposite sign while Runge Kutta method is a self-starting because it 

does not use information from previously calculated points and generally stable but error estimation remains 

problematic.  From the problems solved using FORTRAN programing language, it is observed that a lot of 

useful insights into numerical solution of initial value problems have been gained. We conclude that Runge 

Kutta method is consistent, convergent, quite stable and more accurate than Euler's method and it is widely used 

in solving initial value problems in ordinary differential equations. 
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