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Abstract: An error estimation of the integrated variant of the tau method for ordinary differential equations is
hereby considered for the class of equations characterized by m+s <2 where m and s are, respectively, the
order and the number of overdetermination of the differential equation. Some general results are obtained and
applied to test problems. Numerical evidences show that the estimate adequately captures the order of the tau
approximation.
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I Introduction
The tau method was originally developed by Lanzcos (1938) for the solution of the m-th order problem

L) = ) B Gy 00 = F09), a<x<hb )
With the conditions =
Ley(ra) = ) an Gy =a,  k=1m @)
r=0

Where y™(x) stands for the derivatives of order y(x), f(x) and P.(x), r =0,1, ..., m, are polynomials (or
polynomial approximations immediately derivable by using the tau method) of given function; where a,; , x,
and «;, and given real numbers.

The method solves problem (1) by seeking an approximation:

0 =) ax n <+ ©)
r=0
This is the exact solution of the perturbed form:
1,001 = ) R = £+ H, @)
r=0
With the conditions stated by Eq.(2)
P.(x) = Zpro Py xt ()
H, (x)is a linear combination of Chebyshev polynomials valid in the interval [a, b] and it may be of the form
m+s—1
Hn (X) = Z Tm+s—l Tn—m+r+l(x) (6)
=0

‘
The parameters in Eq. (6) is the number of over-determinations of Eq.(4). T, 's are the tau parameters to

be determined. By inserting (3) into Eq. (4) and then applying the conditions (2), we get the system of linear

equation in (n+m+s+1) unknown constants a,, (r=0(1)n), T; T, ..., T,,4. This system is then solved to obtain

the (n+m+s+1) unknown constants which are to be substituted into Eq. (2) in order to get our approximate

solution of Eqg. ().

Lanzcos introduced the use of the canonical polynomials Q, (x), r>0,

LQ, (x)=x" (7

Where L is the linear operator

L =3P ()= (8)

The expression of the approximate solution y, (x) in terms of a canonical polynomials offers several
advantages because it does not depend on the boundary condition of the problems which we want to solve nor
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on the interval in which the solution is sought, allowing for every segmentation of the domain. They are
permanent in the sense that if an approximation of higher degree is required, the computation does not need to
be repeated from the beginning. Furthermore, the tau method does not require a stage of discretisation of the
given differential operator; as discrete variable method do.

A recursive generation of polynomial was introduced by Ortiz (1969) to give some flexibility in the
computation of the conical polynomials.

An approach developed for an improved accuracy of the approximation y,(x) of y(x), is the
integrated function, whereby we first integrate through Eq. (1), to have

L) = [[m | (i PGy (O)dxdx ..dx ©)
=0

m+s—1

= f f m f [(i X+ D Tyrea Toomarsa (Ol dudx .dx (10)
=0 =0

Thus,

LGu0) = [[m | [(i foar WZH Tovoct Tomorsa (Ol . dx + Hy (6) (11)
=0 =0

the higher order of the perturbation in Eq. (10) account for the improvement in accuracy of y(x) in contrast of
the differential and recursive formulations.

1.1 DEFINATION OF TERMS

Definition 1.1.1

A differential equation (or a system of differential equation) together with its associated given conditions will be
referred to a Differential system.

Definition 1.1.2

The differential system

1, ()1 2 ) B@YO0) = f() + H, () (12)
r=0
LeyCo) s = ) apy Go) = k=1(0m (13)
r=0
will be called the Tau problem corresponding to the differential system
Ly): = ) By = fG) (14)
r=0 mel
LeyGn) s = ) auy® (o) = k=1m (15)

r=0
We call the n-th degree polynomial, y, (x), which satisfies the Tau problem (12), the tau approximant of (13)
and the tau solution of Eq. (12) resulting in the process of solution of (13) will be referred to as tau system of
problem (12).
Definition 1.1.3
The system of equation AT =B where 7= (ag, a3, Ay, ... ..o @y T Tp 2 Tg s .o Tas o) s
Resulting the process of solution tau of (13) will be referred to as Tau System of (12)
Definition 1.1.4
The number of over-determination of the DE (1) is defined by
S=max{N,-r:0<r<m} =20 for N, >r

1. Derivation Of Tau Approximant
We consider here the derivation of tau approximants of varying orders and degrees, for the class of
problem:

@ =) R@yP®=f&), as<x <b (16)
r=0 m-—1

Ley0e) s = ) aney® () =, k=0(L)(m - 1) @
r=0
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where,

Ny
RGO = ) Pyt (18)

=0
The amount of work as well as the size of the space this will involve is enormous; we shall illustrate
the procedure for a fifth degree approximant and then provide only the results for approximants of other
degrees. In the work, we shall derive a fifth degree approximant for
m n

5,12 ) B@YI@ = ) L2+ Hyy @ (19)
=0 =0

Thecasem=1,5s=0
From (1) above, the general case for m=1 and s = 0 is given by;

LYy(X)= (Pig + P11 x)y (x) + Pooy(x) = X frx" + 71T, (%) (20)
And from (11) we have
X X X n
Ly = [ B+ Punde+ [ o y@ae= [ Y ferat+nr, (21)
0 0 0o &
where,

T(x) = XrooCx
This leads to
Probi () —ca] + P[0 () — [ 3 @] + B [ (0= [ (Zﬁt dt+m ) €O (22)

r=0
We seek an approximant solution of the form

Yn (X) = Z?:O arxr (23)

With (23), (22) now becomes,

P1oza x" — Py °<0+P11[Za xm*t

r=0
n xr+l L xT+L L xT+L L )
n
Qe e ) ey ) hgrne) 60X @
L r=0 r=0 r=0 r=0
This gives
POO + TPll = = xr+1
PlOZax’+Z[ 1 ] ax" TlZ;Cr(n)xTZZ)frm"'Plo“o (25)
= =l

Thus, for example when n 5 we have:

5 n
POO +7"P11 XT+1
0 r=0

=
Equating correspondlng coeff|C|ents power of X, we obtain the tau system

[ Py 0 0 0 0 R Pro g

Py Be 0 0 0 0 ol [N

0 Ny 0 0 0 6 =¥ |l e f 1

0 0 Ny By O 0 & I'%i f Al an
0 0 0 Ny B 0 £ z: /{4‘

0 0 0 0 Ngs Ey 'CjS) = i fss

\0 0 0 0 0 N 0 \ ¥

Continuing with the process, using m = 1 and s =1. By expanding (27), we obtain the following tau system
For m=1, s =1 ,we have,

Py 0 0 0 0 0 Sy B
Py By O 0 0 0 -¢,” —c® | /2% I3
L:‘ N, Pio 0 0 0 _C;7) C;:S) Zi fl»‘:
0 Ny Ng Py O 0 @ -c® ||= || %
0 0 Nu Nu B 0 =62 P[] Ty,
% . €] N S 4
0 0 0 Nu o N B =67 ¢ |\=, L /s
0 0 0 Nis Ny =€ ¢/ \ F5%
0 0 0 0 0 Ny =P 8 2
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where
_ Poo+P11 _Po1+P12 _ P00+P11 _ Po1t+P12 _ Poot+P11 _ Po1+P12 —
N3y =——=, Ngp= v Nuz= Ns3 = y Nss= v Nes =——=, Ng=
P 2P _ P 2P P 3 P 4 4 °
01+P12 00+P11 _ PoatP12
N7s = ~ 5 N7g —6 Ngs = -7

Thecasem=2,5s=0
From (1) the general case for m = 2 and s =0 is given by

Ly(X)= (Py + Poy1x + Pyx?)y " (x) + (Pro + Py )y (x) + Pooy(x) = X7 fx" + Hpap (x)  (29)

y0)=ap,y(0)=a; ,a<x<b

where ,
Hm+n (x) = Tn+2(x) + Tn+1(x)

f f (P20+P21t+P22t2)y,;'(t)dtdu+f f (P + P11 1)y, '()dtdu
o Jo o Jo

Poo+P11

(30)

+ fox fO“(Pooyn (®)dtdu = fo" fourz:)frxr + 1T, () + ToTpaq (x)  (31)

We integrate the terms in (31) to have,

X7+
r r+1 n r+2
=Py °<0_P20 °<1+P21 Xg X + Pyo Xi—o @, X" + Py Xl a, x" " — 2Py Yl ga, "'Pzzzr—oax -

r+2 r+2 xr+2

4Py Y pa, — +2P222"
r+2

x— +1 (n+2) n+1 (n+1)
Poo Xr=o 0 DG+ L ERXE — T 2% =G

r+2

X0 fr m (32)

This gives,

2
n n [ =DPa1+Pyg r+1 n [Poo+rPii+(r?=r)Pa; r+2
Zr=0 PZOarxr +Zr=0 [ a,x +Zr=0 a,x -

r+1 (r+1)(r+2)
T1 Zn—o Cr2x” L Yrgc (n+1)xr = Py %o+ [(Pyg — Pp1) X+ Ppp 1 ]x +

=of: Tenees
Equatlng the corresponding coefficients of powers of x in (33) when n =5 we have the tau system

D=
P O 0 0 0 o ¢ ¥
Pio =Py Py 0 0 0 -¢;”? -
P p @) (6)
5> > Py 0 0 -C, —C;
6
0 Riz Ry Py 0 0 -c5” -C5” (34)
0 0 Rs3 Rsy Py 0 -c;” -c,”
0 0 0 Re4 Rs  Po —C7 =7
O 0 0 R75 R7G _C£7) _C£§7)
0 0 0 0 o0 Rgg —C” 0
Py %o
%o fo
/ al\ fi,
a;
E—I 43 | F= 121 (35)
| a | 1,
as
\Tl / fays
21 f */s
0
Then, for m=2,s=0andn=5  DE=F
where,

www.iosrjournals.org

r+1

X X
- R E n_ - E n_ - § — 4+
r=0 4 (r+1)(r+2) P 2r=0a r+2 P 27=0 0, (r+1)(r+2) + P 2r=0 r+1

(33)
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_Poo+P11 _P1o+P21 _Poo+2P11+2Pp) _P1o+2P2 _Poo+3P11+6P2
R - ] R 3= ] R5 — [l R 4= [} R64_ 20 [}
_P1p+3P2; _Ppo+4P11+12Py) _ P1p+4Pyq _Ppo+5P11+20P2)
R65_ ’ R75_ 3 R76 - ) R86_ )
5 30 6 42
and,
A = Pro,V k= 1(1)(n+1) ¥ m. (36)

Pnos20t 0Pt y k= 2(1)(n+2), r=1(1)(n+1vm=1

8, = { om-20t M DPn a1+ CmDEMPm2 g = 3(1)(n+3) , r=1(1)(n+1) ¥Ym = 2

r(r+1)
PoatMet yk= (s+m+1)D)(n+s+m) r=11(n+1) (37)
o = 0, Vri>k k=11nr=21)(n+1) (38)
ko, vk=(m+s+2)(1)(n+3), r=1(1n
Qensz = —C77 k=1(1)(n+3) (39%)
Genrs = —Coy k=1(1)(n+2) (39b)
by=Puo%o  vm O (40)
1
by =——— Z—l’"r!Pr+r+o< Z—lrr!PH o owvm=20 @
. (m_l)!{ 0 QDM 40 ) (DR (41)
(fiz vm=1, vi=2L)(n+2)

b; = { : _1f,_3 (42)
km vm=2, Vi=3(1)(n+3)

. Procedure For Error Estimation
The integrated formulation of the tau method often leads to better accuracy of the tau solution. (See
Fox(1962) and Ortiz(1993)). To this end, let [[ ... ! [ g(x)dx denote the indefinite integration i times applied to
the function g(x) and let

= [f o [ @

The integration form of
L(en(X) )= -Hn(x)dx (44)

is therefore
IL(en(x)) = —-U- ...ijn(x)dx (45)
We considered the perturbed form of (42) i.e. the perturbed integrated error equation

(e, (), ., = =[] ™ [ Hy ()X + Frpaa () (46)
which is equivalent to

L(eaG), == | - [ (WZH o Tyt () + G (1)
=0

m+s—1

D Ty Tra® @7
r=0
and which is satisfied by (e, (x))n+l , given by
Um (X) ®n Tn—m+l (X)
(e, (x))n+l = ~GomD) (48)
n—-m+1

With @, replaced by @, where
Hm+n+1(x) = U T emas+1(0) + Bl mas1 () + o T Timasaa () (49)

n+m+s+1 n+m+s n-m

We insert (48) in (47) and then equate the coefficient of x y XTI X
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for the determination of the parameter @, of (en (x))n+l' We then have
* |6n |

- 22n-2m+1

€ (50)

as an estimation of ¢

We shall carry out these steps for obtaining @,, with various values of m and s and then generalize the
result to obtain a recursive formular for @,,.

V. Error Estimation For The Integrated Formulation
Thecasem=1,s=0
From (46) we have for the problem:

Ly() = (P + Pu)y () + Pooy() = ) fix",  a<x <b (51)
r=0
y(a) =«

The equation :

L) = [ (B + Paa) (e, () du+ f Poo (e ()01t
0

n+2
f Zc(n) "Ydu + 1, Zc(nm r (52)
where
xT, (%)@,
(en (x))n+1 = C(n) (53)
that is, ’
D,
(en (x))n+1 Tk [Kix™* + Kox™ + Kax™ '+ + + ] (54)
1
Whereky; = €7,k = ) kg = €,
Now,
klx 2 k xn+l klxn
J(e (x))n+l__[n+2 n+l+ n RS (55)

Inserting (54) and (55) into (52) gives

(Z)n n+2 n+2 TZC‘rEn)
—[llx”+2+/12x"+1+++ ] —Tlc( ) X2 4 T C( ) __“2+n

n+l 4 4 4 ...
kl n+2 n+1lx (56)

where ,

Py + (n+ 1)P, Py +(n+1)P,
/11=[00 (n )11 00 (n )11]k2 (57)

n+2 ]kl, lzzplokl[ n+1
Equating coefficient of corresponding powers of x from both sides of (52), gives

Py
nel? = )
(n+2) _ 11k _ D, 2>
Cn+2 n+1 - kl (59)
From (57) we have
0, A
fH=—— (60)
G
Inserting this into (59) gives
_ ki
@, = (n+1)Rz (61)
where,
1,052
Ry =2, - (rrzl:zz) (62)
Cn+2
Let R;=4, , then R, can be put in the following recursive form:
Ri=1; (63)
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+2
o _CR,
2= 72 c*2)

n+2

(64)

The case m=1s=1
From (46) , the most general form for m=1 and s=1 is given by

f (Pyp + Pryu+ Ppou®)(e, (W) psrdu + f (Poo +Poru) (e, (W) 41 du
0 0

n+1 n n+3

X X
= -7 f Z ¢ Dyrdu -1, f Z C™Murdu +1, Z Co 3 yr
0 =0 0 =0

+2 =0

n

+1, Z Co D yr (65)
r=0

where (e, (x)), . in (65) is defined by (48).
Thus, Inserting (e, (x)), ., and its integral into (65) gives

?
k_n [llx"+3 + /12x"+2 + /13x"+1 + + + ]
1
T C(n+1)
~ +3 ~ +3 ~ +2 1 1
=20 x 0 |50 + 50D —
n

uC

~ ~(n+3) ~ ~(n+2)
+ |:Tlcnr-:—1 +T2Cnr-:—l - n+1 n+1

lx"” ++ +
where ,

3= et Dy,
1= [Pm +,Er.l|.+21)Pll ky + [P01 +rEr.l|.+21)P12]k2
A3 = Pk + [—Pm +::+11)P11] oy + (22 Do +rfr_lk+11)P12]k3

b =C" k= ks =

n-1"

.- (66)

(67)

Equating coefficients of corresponding powers of from both sides of (66), we obtain the following system of

equations
~ 2 Pn A
6,0 == (68)
(n+1)
L m42) - a2y TGy Ondp
TGy + 12001 _nn—++2 = ;1 (69)
n+1)  ~ ~(n)
. (m+2) |~ Ame2)  T1C 0G _ Oals
T1Cn7j—2 +T2Cn7-:—2 - nr_:_z - n _:2 - ;‘:l (70)
From (68) we have
Q)nll
L kY
Inserting (71) into (69) and solving for t; we have
_ TlCrET-:-Zl) 2, TlCrEﬁ—;g)Al
L= et e (72)
n+2)C,., 1 Covs
Inserting () and () into () and solving for we obtain
_ _kin
B = (n+1)R3 (73)
where
3 2
Ry =23 — Ciis Ry Cila Ry (74)
3TRT T 04 T 042)
. n+3 n+2
Thus, we have the following recursive form,
www.iosrjournals.org
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+3
o GOk,
2= 3

n+3

We repeat he analysis discussed above with m =2 and thus, we obtain the following results:
Form=2,s=0

(75)

@ — _k%Tm+s 76
n n(n+1)R3 ( )
Thus, we obtain general expression for @,, as:

2
0, = ko Vm+s =2 (77)

[T (n+s+1)Rp +5+1

Where k;, = ¢tm D

n+m-—1
® ki Vm+s =2 (78)
= , m s =
" H;nzl(n +ts+r— 1)Rm+s+1
Where Ry+s+1 1S given recursively in terms of Ry, Ry, Rs, . . . ., R as follows:
R]_:/h_
n C(n+u—i)
Ru:Au—ZC"(;i—;:;Ri w=23 .. m+s+1 (79)
i=0 “n+u-1
and
S (m+2—i
L Z}m=0(e S—u+i+j )]! ( ] >

A, = _
C4E T (n+s+m+3-u—r)

Provided i > u- m+1
Thus, from (50) ,we have the following expression for &* :

* —Kk1Tm+s —
—_  —imts +
& T (st )R roet | vm+s 1 (81)
(n—m+1)

Ye, u=23,..m+s+1  (80)

where k; = C(n_m+1) and
* —k1Tm+s —_
&€= [IPe1(n+s+r—1)Rp +s+1 ' vm+s=2 (82)
V. Numerical Examples

We consider here some selected examples for experimentation with our results of the preceeding

section for m+s =1land m+s=2, the exact error is defined as

f{’ = max, stb{ly(xk) —Yn (‘xk)l}a
where {x, }= {0.01k}, for k =0(1) < 100
The numerical results are presented in the tables bellow the examples

=123, ...

Problem 4.1
y'(x)-y(x)=0 y(x) = e*
y(©0)=1, y'(x)=1, 0<x <1

Table 4.1
Error and error estimation for problem 4.1
T 2 3 4 5
Estimates 461x10° 7.50 x 10™ 9.46 x 10" 5.34 x 10°
Exact 3.67x10° 1.01x10” 453x107 2.37x10°
Problem 4.2
¥ (0)-2xy(x) =1
y(0)=0 0 <x<1
Table 4.2
Error and error estimation for example 3.2
Err ni2 3 4 5
Estimates 6.01x10° |6.7x10" 3.24x10™ 46x10”
Exact 9.34x10° |7.11x10™ 4.89x 10" 4.35x10”
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Problem 4.3
y ) +y@ =0 y(x) =€
y0) =1 y(x) = ez" 0<x<1
Table 4.3
Error and error estimation for problem 3.3
T ni?2 3 4 5
Estimates 351x10° [4.60x10™ 5.65 x 10™ 9.02 x 10°
Exact 1.34x 107 2.37x10™ 3.1x10° 4.67 x10°
Problem 4.4
y'(x) +y(x) = x? 0 <x<1
y() =0, y'(0)=3 y(x)=2cosx + 3sinx +x?—2
Table 4.4
Error and error estimation for problem 4.4
IT ni|?2 3 4 5
Estimates 6.46 x 10 4.23x10° 7.0x 107 3.85x10°
Exact 8.84 x 107 1.06 x 10° 2.86 x 10° 2.14x 107
VI. Conclusion

The integrated formulation of the tau method and its error estimation have been generalized for those

ODEs, whose perturbed form involves a maximum of two tau parameters and consequently a maximum over-
determination number, s, and to one.

The tau system for the determination of the tau approximation 1y, (x) was first constructed. The error

estimation which followed immediately provides the estimate of the error in y,(x). Numerical evidences,
obtained for some selected problems, revealed that the estimate accurately captures the order of the exact error.
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