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ABSTRACT: This paper is the result of Analytical Research work in multi-body dynamics and desire to apply 

Kanes Method on the Robotic Dynamics. The Paper applies Kane’s method   (originally called Lagrange form 

of d’Alembert’s principle) for developing dynamical equations of motion and then prepare a solution scheme for 

space Robotics arms.  The implementation of this method on 2R Space Robotic Arm with Mat Lab Code is 

presented in this research paper. It is realized that the limitations and difficulties that are aroused in arm 
dynamics are eliminated with this novel Approach. 
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I. INTRODUCTION 

 
Robotics is considered as a multi body structure, its motion analysis is worked out using D-H Method of 

kinematics and dynamics. Essentially all methods for obtaining equations of motion are equivalent.  However, 

the ease of use of the various methods differs; some are more suited for multibody dynamics than others.  The 

Newton-Euler method is comprehensive in that a complete solution for all the forces and kinematic variables are 

obtained, but it is inefficient.  Applying the Newton-Euler method requires that force and moment balances be 

applied for each body taking in consideration every interactive and constraint force. Therefore, the method is 

inefficient when only a few of the system’s forces need to be solved for.   Lagrange’s Equations provides a 

method for disregarding all interactive and constraint forces that do not perform work.  The major disadvantage 

of this method is the need to differentiate scalar energy functions (kinetic and potential energy).  This is not 

much of a problem for small multibody systems, but becomes an efficiency problem for large multibody 

systems. Kane’s method offers the advantages of both the Newton-Euler and Lagrange methods without the 
disadvantages.  With the use of generalized forces the need for examining interactive and constraint forces 

between bodies is eliminated. Since Kane’s method does not employ the use of energy functions, differentiating 

is not a problem.  The differentiating required to compute velocities and accelerations can obtained through the 

use of algorithms based on vector products.  Kane’s method provides an elegant means to develop the dynamics 

equations for multibody systems that lends itself to automated numerical computation. (Huston 1990) This paper 

is organized in the following manner: Section 2 gives the general form of Kane’s Equation and its derivation. 

The systematic procedure to implement the derived Kanes Equations is described in Section 3 .The application 

of Kane’s method to space robotic arm and its implementation are given in sections 4 and 5 respectively. Finally 

Section 6 draws conclusions. 

 

II. DERIVATION OF KANE’S EQUATIONS 
 

Consider an open-chain multibody system of N interconnected rigid bodies each subject to external and 

constraint forces.  The external forces can be transformed into an equivalent force and torque ( kF


 and kM


) 

passing through kG


, the mass center of the body k (k = 1,2…N). Similar to the external forces, the constraint 

forces may be written as 
c

kF


and 
c

kM


.  Using d’Alembert’s principle for the force equilibrium of body k, the 

following is obtained: 

0  c

kkk FFF


                         (2.1) 

where kkk amF 


is the inertia force of body k. 

The concept of virtual work may be described as follows for a system of N particles with 3N degrees of 

freedom.  The systems configuration can be described using qr  (r = 1,2,…3N) generalized coordinates with 
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force components F1, F2,…, F3N applied to the particles along the corresponding generalized coordinates.  The 

virtual work is then defined as:  





N

i

ii rFW
1




                           (2.2) 

Where iF


 is the resultant force acting on the ith particle and ir  is the position vector of the particle in the 

inertial reference frame. ir  is the virtual displacement, which is imaginary in the sense that it is assumed to 

occur without the passage of time.  Now applying the concept of virtual work to our multibody system 

considering only the work due to the forces on the system we obtain: 

 

0)(  

k

c

kkk rFFFW 


    (k = 1,2,…,N)          (2.3)  

 

The constraints that are commonly encountered are known as workless constraints so… 

 

0 k

c

k rF 


                                            (2.4) 

 

This simplifies the virtual work equation to: 

 

0)(  

kkki rFFW 


     (k = 1,2,…,N) 

or 

0)( 



 

r

r

k

kk q
q

r
FFW 


    (r = 1,2,…,3N)                 (2.5) 

 

The positions vector may also be written as: 

),( tqrr rkk


                                                                                      (2.6) 

so  

t

r

dt

dq

q

r
r kr

r

k

k











    

 

     
t

r
q

q

r k

r

r

k
















                                                                             (2.7) 

Taking the partial derivative of kr


with respect to rq  yields 

r

k

r

k

q

r

q

r















   

or 

r

k

r

k

q

r

q

v















                                                                                  (2.7) 

Since the virtual displacement rq is arbitrary without violating the constraints we can write * as: 

0 

rr ff                                                                                (2.8) 

where rf  and 


rf  are the generalized active and inertia forces respectively and are defined as follows: 

r

k

kr
q

v
Ff








  

and 
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r

k

kr
q

v
Ff








 

 

In a similar fashion it can be shown using virtual work that the moments can be written as: 

0 

rr MM                                                                             (2.9) 

where rM  and 


rM  are the generalized active and inertia moments respectively and are defined as follows: 

r

k

kr
q

TM










 

and 

r

k

kkkr
q

IIM








 

 )(  

By superposition of the force and moment equations we arrive at Kane’s equations: 

0 

rr FF                                                                             (2.10) 

where  

rrr MfF   
  rrr MfF  

 

III. GENERAL PROCEDURE OF KANE’S METHOD 

 
1. Label important points (important points being defined as all center of mass locations and locations of 

applied forces with the exception of conservative constraint forces). 

 

2. Select generalized coordinates (qr) and generalized speeds (ur), then generate expressions for angular 

velocity and acceleration of all bodies and velocity and acceleration of the important points. 
 

3. Construct a partial velocity table of the form; 

 

Generalized 

Speeds ( ur ) 

A

r

N v


 
B

r

N v


 
A

r

N


 
B

r

N


 

r = 1     

r = 2     

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

4.  Fr + Fr* = 0 

 

where the generalized active force, Fr, is defined as: 

  
r

B

r

N

B

B

r

N

B

A

r

N

A

A

r

N

Ar TvFTvFF 


                           ( 3.1) 

and the generalized inertia force, Fr
*, is defined as: 

     

r

B

r

NBNBNBNB

r

NBNA

r

NANANANA

r

NAN

r IIvamIIvamF 


                                                                                                                              (3.2) 

5) Which can then be written in the form: 

    )(uRHSuM                                                                                          (3.3) 

 

IV.  KANE’S METHOD APPLIED TO ROBOTIC ARMDYNAMICS 
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The double Linked Arm is shown in Figure-1.Three Coordinate systems have been introduced at joints and End 

of the arm.The joint arms are {O} and {P}.{B} is the arm end point.  The direction cosines between coordinate 

system {O} and {P} are given in Table-1 and between {P} and {B} in Table-2.  In this case we will introduce 

u3 to find an expression for Tc (constraint torque about 2n ). The joints at O and P are revolute.  Body A and B 

are uniform rods with length 4L and 2L respectively.  Body A has two times the mass of body B.   

                     
                                                 Fig.1 : Double link Robotic Arm 

 

 
      

Step 1) Choose important points: Center of Mass of bodies A and B, and point P. 

 

Step 2) Select generalized coordinates as shown in the figure (plus auxiliary generalized coordinate u3) and 

generate velocity and acceleration expressions for the important points.  

 

The prime in the equations below indicates that the specified quantities contain the auxiliary generalized 

coordinate.  

 

Body A 

2113
ˆˆ auauAN 


                               (4.1)          

)ˆˆ(2 1123 auauLrvv OAANONAN   
              (4.2) 

21âuAN 


                                              (4.3) 

3

2

111
ˆ2ˆ2 aLuauLa AN  


                   (4.4) 

 

Point P 
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)ˆˆ(4 1123 auauLrvv OPANONPN 


                 (4.5) 

 

Body  B 

322113
ˆ)ˆˆ( auauauBAANBN  


                 (4.6) 

 3212322231221
ˆ)(ˆ)4(ˆ)4( asucuasuuacuuLrvv PBBNPNBN   

       (4.7) 

1213221
ˆˆˆ auuauauBAANBAANBN  


            (4.8) 
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                                                                                                                                      (4.9)                                                                                  

                    

Step 3) Construct a partial velocity table. 
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ˆˆ4 aLsaL   

r = 2 0 0 
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Step 5) Assemble 0 
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                                                                                                                                         (4.10) 

V. SIMULATION STUDIES 
 

The simulation studies ,  to kow the acceleration of End point of arm and Torque characterstic at joint1, is 

carried out with the  parametersgiven in Table:3. 

 

Table:3  Parameters taken for Simulation 

Parameters Values 

M 5 Kg 

L 1.25m 

U1 1.0 m/s 

U2 0.25 m/s 

q for joint O 0 -45o 

q for joint A 0 -300 

End effector travel time 0  -10Sec 

 

 The dynamic behaviour of robotic arm due to uniform angular motions at joints O and A is studied interms of 

the acceleration of end effector (B) and the major Joint Torque at  joint O and illustrated in Fig.2 and Fig. 3. The 

Fig. 3 illustrates the variation of acceleration computed with the proposed Kanes method as well as Leagrangian 

method.There is a slight deviation between the both response. This is due to approximation made in the non 

linear terms of the method. 

 

Morever , an acceptable correlation between the two torque responses with the both methods Lagrangian and 
Kanes, can be seen in Fig. 3. This is due to fact that the proposed model allows analysing variations in the 

torque with the conventional linear model. 
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                                             Fig. 2  The acceleration of end effector 
 

 

 
                                                          Fig. 3 Torque variation at joint O 

 

 

VI. CONCLUSIONS 

 
Although the applications of Kane’s method to multibody systems in this paper has been old one, We have 
shown that it is a powerful technique in robot dynamics.  It offers the advantages of both the Newton-Euler and 

Lagrange methods in that it can be comprehensive and efficient.  As part of implimenting  Kane’s method , a 

dynamics software package (MATLAB) has been used. The generelasised procedure of  Kane’s method to 

develop equations of motion and perform simulations is presented in this paper.   We have also  successfully 

built  dynamic models using lagrangian method  to R-R Robotic Arms   and published  in journals. In this paper 

, the earlier published work is compared with Kanes method.  It is also concluded that the developed Kanes 

model is very useful in Robotics when  its complexity is increased  by the way  adding joints/additional degrees 

of freedom. 

 

VII. Acknowledgements 

 
This work was supported in part of AICTE Sponsored Project which was sanctioned in the year 2012. Authors 

express thanks to the head of the department and executive director of SreeNIdhi Institute of Science 

&Technology: Hyderabad for extending all possible help in bringing out this manuscript. 

 



 Kane’s Method for Robotic Arm Dynamics: A Novel Approach 

Second National Conference on Recent Developments in Mechanical Engineering  49 | Page 

M.E.Society's College of Engineering, Pune, India                                                    

 

 

REFERENCES 

 
[1] R.Weinstein J.Teran , and R.Fedkiw  Dynamic Simulation of articulated rigid bodies ,IEEE Trans on Visualization 

and computer Graphics 2005 
[2] A.Purushotham, and G.V.Rao  Kineto Elastic Analysis of a four linked three degree freedom robotic Manipulator    

Proceedings of Natinal Conference  Advanced Trends in Mechanical Engineering Research and Development  21st 

Dec-2002 J.N.T.U. Anantha pur 

[3]  Numerical  Investigation of Dynamic Analysis of a Three Degree Freedom Leg for Walking Robot  National 

Conference on Computational Methods in Mechanical Engineering Sept 16-17, 2005  O.U.C.O.E:Hyderabad 

[4] Amirouche, Farid M.L. Computational Methods in Multibody Dynamics. New Jersey: Prentice Hall, 1992. 
[5] Anderson, Kurt S.  Applied Multibody Dynamics. Rensselaer Polytechnic Institute 1998. 
[6] Critchley, James H.  Personal Notes: Kane's Method Application. March 1999.  

 Huston, Ronald L. Multibody Dynamics.  Boston: Butterworth-Heinemann, 1990. 
[7] Kane, Thomas R., and David A. Levinson. Dynamics: Theory and Applications. New York: McGraw-Hill, 1985. 

 
Notation: 

 

Notation that will be used throughout the rest of the paper: 

 rq  - generalized coordinate 

 ru   - generalized speed, typically equal to 
dt

dqr
 

 
PN v


 - velocity of P with respect to the Newtonian (inertial) reference frame 

 
AN v


 - velocity of the center of mass of body A 

 
A

r

N v


 - partial velocity, equal to 

r

AN

u

v






 

 Cn or Sn – Cos(n) or Sin(n) 


