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Abstract: In this work, the system of three coupled differential equations governing the generalised elastic thin-

walled column buckling problem was solved by the finite Fourier sine transform method for the case of pinned 

ends. The boundary value problem was found to reduce to an algebraic eigenvalue eigenvector problem for 

which the characteristic buckling equation was found. Two cases were considered. For doubly symmetric 

sections, it was found that the buckling modes are uncoupled. For monosymmetric sections, it was found that 

one of the equations is uncoupled, while the other two are coupled. The expressions for the buckling load 

(eigenvalues) obtained in this study were found to be identical with solutions in literature for the same problem 

obtained using the method of undetermined parameters. 
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I. Introduction 

Thin-walled structural elements with cross-sectional shapes such as  with 

isotropic or anisotropic materials are commonly used as beams, columns and beam columns in engineering 

applications ranging from buildings, bridges, and aerospace structures. Due to their thin-walled, open cross-

sections, these elements are always prone to torsion and instabilities [1]. The problem of buckling of thin-walled 

open-section columns often require complex mathematical analysis, and present problems of considerable 

magnitude. The modes of failure which form the basis of thin-walled column design are: flexural buckling, local 

buckling and torsional buckling [2]. Flexural buckling is a sudden deviation of the column from the initial 

configuration when the critical load is attained. Local buckling will appear as a series of waves in the 

component parts of the cross-section; while the column remains straight. It is virtually independent of the 

column length. Torsional buckling occurs when the central part of the column rotates bodily relative to its ends. 

This occurs even if the ends are free to rotate [2]. These modes of buckling failure do not necessarily occur 

independently and interaction of the buckling modes frequently occur [2]. Flexural and torsional buckling are 

often interrelated while flexural and local buckling interact in the post buckling stage. 

The buckling behaviour of thin walled columns is very complex and complicated as a result of the 

interaction effects of compression, flexure and torsional deformations [3]. In structural design, flexural-torsional 

buckling is an important consideration, particularly for thin-walled members. Flexural-torsional buckling mode 

involves simultaneous bending and twisting of the cross-section. The cross-section undergoes translational 

deformation in the two axes of the cross-section, as well as rotational deformation about the shear center. The 

flexural-torsional buckling problems of thin walled columns has been investigated by Alsayed [4], Timoshenko 

and Gere [5], Allen and Bulson [6], Chajes [7] and Wang et al [8] and used in the development of the design 

criteria for steel design. Ike et al [9] have used Galerkin variational method to solve the thin-walled column 

buckling problem. 

 

II. Research aim and objectives 
The general aim and objective of this work is to apply the finite Fourier sine transform method to the solution of 

the generalised flexural-torsional buckling problem of an elastic column with pinned supports at x = 0 and x = l, 

where l is the length of the column. The specific objectives are: 

(i) to use the finite Fourier sine transform method to solve the generalised elastic column buckling problem 

defined by a system of three coupled differential equations in terms of three unknown displacement 

functions v(x), w(x) and ( ),x  for the case of pinned support at the ends x = 0, and x = l 
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(ii) to show that the generalised elastic column buckling equations reduce to an algebraic eigenvalue-

eigenvector problem and 

(iii) to derive the critical buckling loads for two special cases; namely – columns with doubly symmetric cross-

sections and columns with singly symmetric cross-sections. 

 

III. Methodology 
The finite Fourier sine transform was first introduced by Doetsch [13] as a method of integral 

transformation of boundary value problems. Subsequently, the method has been developed and generalised by 

several researchers such as Kneitz [14], Strandhagen [15], Roettinger [16] and Brown [17]. The general 

philosophy behind integral transformations, and the finite Fourier transform method is that they simplify 

boundary value problems by eliminating partial derivatives with respect to one of the independent variables, 

hence the transformed equation has one less independent variable.  

Definitions: The finite Fourier sine transform ( )nS u x  of a function ( )u x  of x, is defined as: 

  
0

( ) ( )sin

l

n n

m x
S S u x u x dx

l


      m = 1, 2, 3, …   (1) 

where 0 x l    

Similarly, the finite Fourier sine transforms of the derivatives are given by 
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IV. Theoretical Framework – flexural-torsional governing equations of buckling elastic columns 
Consider an elastic column of length l, whose longitudinal axis is defined by the x coordinate, and the 

plane of the cross-section is defined by the yz Cartesian coordinate plane. The system of governing differential 

equations that describe the flexural-torsional buckling behaviour of a generalized elastic column under an axial 

compressive load N, acting through the centroid of the cross-section if the moments due to the transverse loads 

are zero, the applied torque vanishes; and the load is applied such that the bi-moment is zero are given by the 

following [10, 11, 12]: 

 

4 2 2

4 2 2
0zz x x z

d v d v d
EI N N e

dx dx dx


         (6) 

 

4 2 2

4 2 2
0yy x x y

d w d w d
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dx dx dx


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4 2 2 2

4 2 2 2
0E x

w z x y x

I Nd d d v d w
EC GJ e N e N

Adx dx dx dx

  
     
 

  (8) 

 

where v(x), w(x) and ( )x  are the displacements 

E = Young’s modulus of elasticity 

G = shear modulus or modulus of rigidity 

Cw = warping constant 

Izz = moment of inertia about the z axis 

Iyy = moment of inertia about the y axis 

ez = coordinate of the shear centre 

ey = coordinate of the shear centre 

Nx = load in the x – direction 

IE = polar moment of inertia about the shear centre 

J = St Venant torsional stiffness of the section 

  
2 2( )E yy zz y zI I I e e A          (9) 

A  area of cross-section. 

The governing equations are a system of three differential equations in terms of the three displacements v(x), 

w(x) and ( ).x  

 

V. Application of the finite Fourier Sine Transform Method to the flexural-torsional buckling 

problem 
We seek to apply the finite Fourier Sine transform method to find solutions to the system of governing 

differential equations for a column of length l with pinned ends at x = 0 and x = l. The unknown functions in the 

governing system of differential equations are the three displacement functions, namely v(x), w(x) and ( );x  

and we seek a solution to the elastic column buckling problem for the case of pinned-pinned end supports (i.e.at 

x = 0 and x = l). The boundary conditions for pinned-pinned supports at x = 0, and x = l are: 

   ( 0) ( ) 0v x v x l     

   ( 0) ( ) 0w x w x l     

   ( 0) ( ) 0x x l          (10) 

   ( 0) ( ) 0v x v x l      

   ( 0) ( ) 0w x w x l      

   ( 0) ( ) 0x x l        

where 

2 2

2 2
,

d v d w
v w

dx dx
    and 

2

2

d

dx


   and the primes denote differentiation with respect to the 

coordinate variable x. 

The boundary conditions make the application of the finite Fourier Sine transform method viable for the 

problem for the case of pinned supports at x = 0, and x = l. Hence, applying the finite Fourier sine transforms to 

the system of three differential equations, we obtain: 
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Simplifying, 
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Using integration by parts, we find: 
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where 
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and ( , )V m x  is the finite Fourier Sine transform of v(x), W(m, x) is the finite Fourier Sine transform of w(x) 

and ( , )m x  is the finite Fourier Sine transform of ( ).x  

The system of governing differential equations become: 
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We divide through by 
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This is a system of homogeneous algebraic equations in terms of V(m, x), W(m, x) and ( , )m x  and can be 

written in matrix form as: 
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           …(32) 

 

For nontrivial solutions, the determinant of the coefficient matrix must vanish, and the requirement for the 

vanishing of the coefficient matrix yields the characteristic equation or stability equation for the problem. 

Hence, the stability equation is given by: 
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           …(33) 

 

The characteristic buckling equation for the flexural torsional problem of elastic column with pinned ends at x = 

0, and x = l is obtained by the expansion of the determinantal equation (Equation (33)), and finding the roots or 

the zeros of the resulting polynomial in Nx. Two particular cases of this problem, which can be considered as 

simplifications of the general flexural-torsional buckling problem are considered. 

 

Case 1: The cross section of the elastic column is doubly symmetric about the y and z coordinate axes. Some 

typical examples of doubly symmetric cross sections are symmetric I sections, and crucifix sections. For doubly 

symmetric cross sections, ey = ez = 0 and the characteristic buckling equation simplifies to Equation (34). 
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           …(34) 

Expansion of the characteristic stability equation yields the factorized form of the polynomial in Nx: 

2 2 2
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  (35) 

 

The buckling equations are found to be uncoupled as follows: 
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The three roots of the characteristic buckling equation are: 
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where 
zzEP  is the Euler load for flexural buckling about the zz  axis, 

yyEP  is the Euler load for flexural 

buckling about the yy axis and Pt is the buckling load in torsional (twist) buckling. The stress ( )t
xx  in torsional 

buckling is 

 

2
1t t

xx w
p

Pm
EC GJ

I l A

  
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      (42) 

where Ip = IE for doubly symmetric cross-section. 

 

Case 2: In this case, the cross section is singly symmetric with respect to the coordinate axes. A typical example 

of singly symmetric cross-section is the channel section. If the z axis is the axis of symmetry, then ey = 0 and 

0.ze   The characteristic buckling equation simplifies to become: 
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           …(43) 

Expansion of the equation yields: 
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           …(44) 

Solving, we have 
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   (46) 

The roots are: 
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The expression for Nx given by Equation (48) represents the buckling load for the coupled flexural toritional 

buckling mode. A negative sign in Equation (48) would yield smaller values for Nx. 

Hence, 
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Critical buckling loads are obtained when m = 1 in the Equations (47) and (48). Critical buckling loads are thus 

obtained as: 
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where the superscript c is used to denote critical. 

The critical buckling stress 
cr

fT
xx

  for the coupled flexural-torsional buckling mode is obtained as: 
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where 
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VI. Discussion of Results 
This work has successfully applied the finite Fourier Sine transform method to the flexural-torsional 

buckling analysis of thin-walled open section columns with both ends simply supported. The finite sine 

transform was applied to the governing equations which were a system of three coupled differential equations in 

terms of the three displacement functions v(x), w(x) and ( ).x  After simplification, the system of transformed 

equations reduced to a system of homogeneous algebraic equations in terms of the three transformed 
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displacement functions V(m, x), W(m, x) and ( , )m x  as presented in Equation (32). The buckling or 

characteristic equation is obtained from the requirement of vanishing of the determinant of the matrix of 

coefficients and obtained as Equation (33). The zeros of the resulting polynomial equation in Nx would yield the 

buckling loads of the column. 

Two cases of the general buckling problem were considered: namely – case of doubly symmetric cross-

sections and singly symmetric cross-sections. For doubly symmetric cross-sections, the shear center coincide 

with the centroid of the cross-section, yielding ey = ez = 0. The system of governing differential equations 

become uncoupled, resulting in buckling modes, that are uncoupled. The characteristic buckling equation for 

doubly symmetric sections found as equation (35); is uncoupled, with three roots representing the eigenvalues of 

the buckling problem. The three roots are the Euler flexural buckling load in the z axis, the Euler flexural 

buckling load in the y axis, and the load in torsional (twist) buckling. The critical buckling load is the lowest 

value of the three buckling loads, and determines how the column with doubly symmetrical cross section will 

fail. The second case considered columns with monosymmetric cross-sections, where zz axis is the axis of 

symmetry, ey = 0, and from the system of governing differential equations, Equation (7) is uncoupled from 

Equations (6) and (8). The characteristic buckling equation was found in this case as Equation (45) a polynomial 

equation in Nx with one flexural buckling mode uncoupled and the other flexural buckling mode coupled with 

the torsional buckling mode. Thus such monosymmetric columns can fail by Euler flexural buckling mode in the 

yy direction and torsional-flexural buckling mode. The zeros of the polynomial (equivalent to the eigenvalues) 

yield the values of the buckling load. The polynomial would yield three values of the buckling load namely – 

Euler flexural buckling load in the yy direction and two coupled torsional-flexural buckling loads given by 

Equation (48). Evidently, Equation (50) would give lower values of the torsional-flexural buckling load; and the 

buckling mode would be governed by Nx in Equation (52) or the Euler flexural buckling load in the y-direction, 

whichever one is smaller. The expressions for the buckling loads obtained by finite Fourier Sine transform 

method agree excellently with solutions by Det [11] and Wang et al [8]. 

 

VII. Conclusion 
For this study, the following conclusions can be adduced: 

(i) For doubly symmetric thin-walled columns, the system of governing differential equations are uncoupled 

resulting in buckling modes and buckling loads that are uncoupled. 

(ii) For monosymmetric thin walled columns, with zz axis being the axis of symmetry, flexural buckling mode 

in the y direction is uncoupled while the flexural buckling mode in the z direction is coupled with torsional 

buckling. 

(iii) For thin walled coluns without symmetry about any axis, the three buckling modes are coupled and the two 

flexural buckling modes interact with torsional buckling mode. 

 

The finite Fourier Sine transform method has been shown to be an effective tool for the analysis of 

thin-walled columns with pinned ends. The advantage of the method is that no apriori assumption about 

buckling modes was necessary to solve the system of differential equations. The method yielded exact solutions. 
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