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Abstract: This paper presents the flexural analysis using the Galerkin-Vlasov method for rectangular Kirchhoff 

plates with two opposite edges ( )y b   clamped and the other two opposite edges ( 0, 2 )x x a   simply 

supported. The plate considered is assumed homogeneous and isotropic and submitted to a uniformly 

distributed load, p0 over the entire plate domain. The plate variational functional is constructed using the 

Galerkin-Vlasov philosophy by choosing the displacement shape functions to be a product of the eigen functions 

of a clamped – clamped Euler – Bernoulli beam in the corresponding clamped directions and the eigen function 

of a simply supported Euler – Bernoulli beam in the x-coordinate direction. The plate variational functional was 

then solved analytically to obtain the plate deflection function in terms of the spatial coordinates (x, y). 

Maximum plate deflection and maximum bending moments were evaluated and found to occur at the plate 

centre. The maximum deflection and maximum bending moments were compared with solutions obtained by 

Timoshenko and Woinowsky-Krieger, and found to be in good agreement with an average relative error of –

0.37% for a four term displacement shape function. Convergence to the exact Timoshenko solution is obtained 

using more terms in the displacement shape function. The bending moment distributions were also determined 

using the moment-displacement relations, and found to agree with solutions obtained by Timoshenko and 

Woinowsky-Krieger. 

Keywords: Galerkin-Vlasov method, plate variational functional, eigenfunction, Kirchhoff plate, Euler-

Bernoulli beam. 

 

I. Introduction 
Plates are three dimensional structural elements, having thicknesses much smaller than the other 

dimensions. The stress state in a typical plate problem is thus a three dimensional stress state; described using 

three dimensional theory of elasticity [1]. The behaviour of plates depends greatly on the ratio of the thickness 

to the least lateral dimension. Thus plates have been classified into three groups [2, 3] namely (i) thin plates with 

small deflections (ii) thin plates with large deflections and (iii) thick plates. Thin plates are defined as those 

plates which the ratio of the thickness to the smaller span length is less than 1/20 [2]. Ventsel and Krauthammar 

[4] define thin plates as plates with a/h ratio in the range 8 10 80 10... / ...a h   

Plates are important structural components/elements extensively used in various engineering 

applications such as floor slabs, bridge decks, rigid pavements of highways and airport runways, ship decks, 

aerocraft and spacecraft panels and retaining walls. The behaviour of plates depends on the type and nature of 

load application, and in general, plates can be subject to flexural, dynamic, and buckling behaviours. Plates are 

also classified by their shapes and materials as rectangular, circular, elliptical, polygonal, orthotropic, 

anisotropic, isotropic, homogeneous and non-homogeneous (heterogeneous). In this work, the static flexural 

analysis of rectangular thin plates of the Kirchhoff plate model is performed using the Galerkin-Vlasov method. 

 

II. Literature Review 
Literature survey shows that several theories are used to describe the static flexure of plates. Szilard [3] 

presented the variable thickness thin plate theory as 

  
2 2 1( ( , ) ) ( ) ( , ) ( , )zD x y w L D w q x y          (1) 

where ( , )L D w  is a partial differential operator given by 
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     
  

      
    (2) 

D(x, y) is the flexural rigidity of the plate which is shown to vary with the spatial coordinates variables, x and y, 

  is the Poisson’s ratio, qz(x, y) is the distributed transverse load on the plate, w(x, y) is the plate transverse 

deflection. 

Only a few problems of plates with variable flexural rigidity have been solved by the classical methods 

of Levy and Navier [4]. The complexity of the analysis of thin plates with variable thickness depends 

significantly on the mathematical expressions describing the thickness variation and the flexural rigidity [3]. 

Large deflection thin plate theory, originally formulated by von-Karman in 1910, comprise the following 

equilibrium and compatibility equations 

  
4 ( , ) ( , ) zpD
w x y L w

h h
          (3) 

  
4 1

2

1
( , ) ( , )x y L w w

E
         (4) 

where L  is a partial differential operator, defined as Equation (2), E is the Young’s modulus,   is the Airy 

stress function, h is the plate thickness, pz is the distributed load. 

Von – Karman’s large deflection thin plate equations are coupled non linear partial differential equations of 

fourth order in w and (x, y). 

 

Reissner’s stress-based theory of plates, formulated by applying Castigliano’s theorem of least work to a 

differential plate element, and using stresses as the unknown variables, yielded the following three simultaneous 

partial differential equations [5], 

 

2
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    (7) 

where 
2  is the Laplacian operator in Cartesian coordinates. 

 Reissner’s plate theory is an extension of the Kirchhoff – Love plate theory incorporating shear 

deformation effects; and is useful in moderately thick plates. Reissner’s assumption of quadratic variation of 

shear stress through the thickness is consistent with theory of elasticity solution for plates under static flexure. 

 

Mindlin relaxed Kirchhoff’s hypothesis and using a displacement based approach, modified the 

Kirchhoff – Love plate theory, thus extending the scope of application to thick plates. Mindlin’s first order shear 

deformation plate theory has been developed by Mindlin [6], Mindlin and Deresiewicz [7] and Mindlin et al [8]. 

They considered shear deformation effects on the plate flexural behaviour by assuming linear variations for all 

three displacement components across the plate thickness. 

 The governing partial differential equations (PDE) of isotropic Mindlin plates are a system of three 

partial differential equations in terms of three unknown displacement parameters, w, x and y. They are [6, 3] 

 
2 yx q
w

x y kGh

 
   

 
       (8) 

 
2 yx q

x y D

  
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       (9) 
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  (11) 

where k = shear correction factor 

G = shear modulus 

D = flexural rigidity of plate 

h = plate thickness 

q = transverse load 

 = Poisson’s ratio of plate material 

x, y = rotations of plate middle surface 

w(x, y) = transverse displacement 

 

Mindlin plate theory assumes the shear strain (shear stress) is constant across the plate thickness in 

violation of the predictions of the theory of elasticity solutions for plate flexure since the shear stress are known 

to have a parabolic (quadratic) variation over the plate thickness. Mindlin introduced a shear correction factor, k 

to ensure the lowest amount of internal energy is predicted by the Mindlin theory. The shear stress correction 

factor, k, merely results in the resultant shear stress being in agreement with the theory of  elasticity solutions, 

but the distribution of the shear stress over the plate thickness violate theory of elasticity solutions. 

 

Higher Order Shear Deformation Plate Theory (HSDPT) 

Chandrashekhara [9] developed a HSDPT for rectangular isotropic plates in flexure by limiting the 

displacement variation in the x and y coordinate directions to the cubic term of the thickness coordinate, z while 

the lateral deflection in the z direction is considered to vary only with the x and y coordinates. Using those 

assumptions on the displacement components, and the strain-displacement equations, the stress-strain law and 

equilibrium, the governing partial differential equations of the HSDPT were given by Chandrashekhara [9] as 

follows 
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where ,x y   are unknown parameters used to describe the displacement field. w0 is the transverse deflection 

q is the distributed transverse load. D is the flexural rigidity of plate and h is the plate thickness. 

 As is evident in the complex and complicated nature of the governing PDE, higher order plate theories 

are cumbersome and conceptually more demanding, because with each additional power of the thickness 

coordinate, more unknown variables are introduced into the governing equation, and some of these unknown 

variables may not have physical interpretation. 

 

Kirchhoff – Love Plate Theory (Classical Plate Theory) 

Kirchhoff plate theory is a linear plate theory that uncouples flexure and stretching behaviours of the 

plate. Kirchhoff plate theory reduces the three dimensional plate problem to a two dimensional problem by 

integrating out the thickness dimension and expressing equilibrium in terms of force resultants. The CPT is 

based in the following kinematic assumptions: 
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(i) straight lines normal to the plate middle surface remain straight and normal to the middle surface after 

deformation (normality condition). 

(ii) the thickness of the plate does not change during a deformation. 

The governing partial differential equation for plate flexure is the fourth order PDE  

  
4 ( , ) ( , )zD w x y p x y        (15) 

where D = flexural rigidity of the plate 

3

212(1 )

Eh


 
  

w(x,y) = transverse displacement 

pz(x,y) = transverse load on plate. 

 In most plate problems, the plate thickness is small as compared to the other planar dimensions and the 

plate deflections are usually small in comparison with the thickness of the plate [10]. This makes the CPT the 

plate model of choice in the description of most of such plate problems where the plate is thin and the plate 

deformations are small compared with the plate thickness. 

 Some advantages of the CPT include [10], 

(i) the bending and stretching behaviours are uncoupled but can be analysed together by linear addition due to 

the linear nature of the PDE. 

(ii) the governing PDE involves only one unknown variable – the transverse displacement. 

(iii) the stresses can be calculated from the stress displacement equations. 

(iv) CPT yields parabolic variation of stress yz and zx over the thickness in agreement with structural analysis 

results. 

 

Methods for solving plate problems 

A review of literature shows that methods for solving plate problems can be classified into two broad 

groups namely: analytical methods, and numerical methods. Analytical methods aim at solving the governing 

equations of the plate problem in a mathematically rigorous manner, and thus to obtain solutions which exactly 

satisfy the governing equations within the plate domain as well as the plate boundaries. Analytical methods thus 

lead to closed form solutions for the plate problems. Typical analytical methods include Navier’s double 

trigonometric series method [11], Levy’s single trigonometric series method [12]. Numerical methods are 

methods used to obtain approximate solutions to the plate problem. They are particularly useful when closed 

form solutions cannot be obtained by rigorous mathematical solution of the plate problem. Numerical methods 

include variational Ritz methods, variational Galerkin methods, weighted residual methods, finite Difference 

methods, finite Element methods, Boundary Element methods, and collocation methods. 

 Variational methods of Ritz and Galerkin have been applied to the analysis of plates by Osadebe et al 

[13], Aginam et al [14], Mbakogu and Pavlovic [15], Reddy [16], Balasubramanian [17], and Kantorovich and 

Krylov [18]. Ezeh et al [19] presented finite difference method of plate analysis. Closed form analytical 

solutions of the plate problem using the methods of Navier, Levy and the separation of variables method have 

been presented in Ventsel and Krauthammer [4], Szilard [3], Chandrashekhara [9], Ugural [2] and Timoshenko 

and Woinowsky-Krieger [10]. 

 

III. Research Aim and Objectives 
The principal aim of this study is to apply the Galerkin-Vlasov method for analysis of rectangular 

Kirchhoff plates with two opposite edges x = 0, x = 2a simply supported and the other two opposite 

edges ,y b    y = b clamped, for the case of uniformly distributed load. The specific objectives include: 

(i) to present the Galerkin-Vlasov variational integral for the Kirchhoff plate with two opposite edges x = 0, x 

= 2a simply supported and the other two edges ,y b  y = b clamped for the case of uniformly distributed 

load. 

(ii) to obtain solutions for the deflection and bending moment for the Kirchhoff plates problem formulated in (i) 

above 

(iii) to compare the maximum values of the deflection, and bending moments obtained in (ii) above with the 

solutions from literature. 

 

IV. Galerkin-Vlasov Formulation and Solution 
We consider the rectangular Kirchhoff plate with two opposite edges simply supported and the other 

two opposite edges clamped. The plate is submitted to a uniformly distributed transverse load of constant 

intensity p0 over the entire domain of the plate. The x and y coordinate axes are defined as shown on Figure 1. 

The plate domain is  
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 0 2x a    b y b    

 
Figure 1: Rectangular Kirchhoff SCSC plate with two opposite edges  clamped and the other two edges simply 

supported 

 

The governing partial differential equation of an isotropic Kirchhoff plate is the fourth order partial differential 

equation given as Equation (15). The boundary conditions of the plate under consideration in this study are 

  0( , )w x y b          (16) 

  0( , )
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x y b
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
  


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2

2
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w
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
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2
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
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
       (18) 

 

In the Galerkin-Vlasov method, the displacement shape functions are chosen to be the eigen-functions of a 

clamped Euler Bernoulli beam in the y-coordinate direction and the eigen-functions of a simply supported Euler 

Bernoulli beam in the x-coordinate direction. Hence, the shape functions of the displacement field are given by 

0 2 1 3 5
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( ) sin ; , , , ,...m

m x
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
        (19) 
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k y k y

b bG y b y b n
k k

          (20) 

where  1 2 36502. ;k    2 5 49280.k    

 3 8 63938.k    4 11 78097.k   

 
4 1

4

( )
n

n
k

 
  for large values of n. 

kn are the roots of the transcendental equation tan tanh 0n nk k      (21) 

The Galerkin-Vlasov variational functional is given by the double integral: 

  
4 0( ( , )) ( , )ij

R

D w p x y x y dxdy        (22) 
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where ij(x, y) are the shape functions of the displacement field, and R the domain of the multiple integral is the 

two dimensional region of the plate domain. 

Here,    ( , ) ( ) ( )ij i jx y F x G y       (23) 

Thus, we assume the displacement field as 

  ( , ) ( ) ( )mn m n

m n

W x y W F x G y
 

      (24) 

where Wmn are the displacement parameters we seek to determine. 

 We also express the distributed transverse load p(x, y) in terms of the beam orthogonal basis functions 

Fm Gn as 

   ( , ) ( ) ( )mn m n

m n

p x y P F x G y
 

     (25) 

where pmn are the load coefficients of the orthogonal series expansions. 

The Galerkin-Vlasov variational functional for the Kirchhoff plate problem becomes 

4 0( ( ) ( ) ( ) ( )) ( ) ( )mn m n mn m n i jW F x G y p F x G y F x G y dxdy      (26) 
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The displacement shape functions of the Galerkin-Vlasov formulation presented in this study are orthogonal 

basis functions, and the above equations simplify to 
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The integrations are evaluated using Mathematica software on line integrator.  
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 The integrals are evaluated using the online Mathematica integrator software to obtain 
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For the uniformly distributed transverse load 0( , ) ,p x y p  where p0 is the intensity and 
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8

2 2 21 1

2 2 28

(tanh tan )

sinh sin

cosh cos

n n
n

mn

n n n n
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n n

p
k k ab

m k
w

k k k k am m
D b k k

a ba k k b





       
         

      

 

                 … (37) 

20

2 2 44 4

2 3 2 2 2 2

8

2 2 21 1

2 28 2

(tanh tan )

sinh sin

cosh cos

n n
n

mn

n n n n
n n

n n

p
k k b

m k
w

m k k k km
D k k

b b k k b

 



          

                        

 

                                                   …(38) 

 

4 4
0

4 4 2 2
4 4 2

8

2
8 2

(tanh tan )

( )

n n

n
mn

n n n

k k q b

m k D
w

m m
k k f k

 



  

    
 

     (39) 
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4
0( )mn

q a
w F

D
          (40) 

2 2

2 21 1

2 2

   
      

   

sinh sin
( )

cosh cos

n n
n n n

n n

k k
f k k k

k k
    (41) 

1

8(tanh tan )
( )

( )

n n

n

k k
F

m k G


 

 
        (42) 

4 4 2 2
4 4 2

1 2
8 2

( ) ( )n n n

m m
G k k f k

 
            (43) 

2 2

2 21 1

2 2

sinh sin
( )

cosh cos

n n
n n n

n n

k k
f k k k

k k

   
      

   
    (44) 

The deflection thus becomes 

2

cosh cos

( , ) sin
cosh cos

n n

mn
n nm n

k y k y

m x b bw x y w
a k k

 
 
 

  
 

      (45) 

for m = 1, 3, 5…  n = 1, 2, 3, 4, … 

 

From considerations of the symmetrical nature of the plate and the symmetrical nature of the distributed 

transverse loading, the maximum deflection occurs at the centre of the plate (x = a, y = 0). Thus the maximum 

deflection is evaluated as 

 max

cosh 0 cos0
sin ( , 0)

2 cosh cos
mn

n nm n

m
w w w x a y

k k

   
     

 
    (46) 

 m = 1, 3, 5, 7, 9, …  n = 1, 2, 3, 4, 5, … 

 
1

2
1 1

1max ( )
cosh cos

m

mn
n nm n

w w
k k

 
 

   
 

     (47) 

 The values of the maximum deflection are evaluated for various values of the plate aspect ratios, and 

using a one term and four term truncation of the orthogonal series Fm(x) Gn(y) and presented in Table 1. These 

maximum deflection values are then compared with the classical solutions obtained by Timoshenko and 

Woinowsky-Krieger who solved the same problem by applying the principle of superposition.  

 

Bending Moment Distribution 
The bending moment distributions are given by 

 

2 2

2 2xx

w w
M D

x y

  
       

       (48) 

 

2 2

2 2yy

w w
M D

y x

  
       

      (49) 

  
22

2
sin ( )

2 2
mn

m n

w m m x
w G y

a ax

    
   

  
      (50) 

  
2

2
sin ( )

2
mn

m n

w m x
w G y

ay

  



       (51) 

 

sinh sin

( )
cosh cos

n n

n
n

n n

k y k y
k b bG y
b k k

 
  

    
  

 

      (52) 
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2 cosh cos

( )
cosh cos

n n

n

n n

k y k y
k b bG y
b k k

 
  

    
   

 

    (53) 

 

22

2

cosh cos

sin
2 cosh cos
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 
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sin
2 2 cosh cos
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  (57) 

At the centre of the plate, x = a, y = 0 
2
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Similarly, at the centre, 
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The bending moment at the middle of the clamped edge (x = a, y = b) is 
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Similarly, 
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The bending moments expressions obtained for Mxx, Myy are computed at the centre of the plate and at the 

middle of the clamped edge and shown in tabulated form in Tables 6, 7 and 8. 

 

Timoshenko and Woinowsky-Krieger [10] obtained their solutions for the same problem of rectangular 

Kirchhoff plate with two opposite edges (x = 0, x = 2a) simply supported and the other edges y = b clamped by 

first solving the problem using the assumption that all the four edges are simply supported, and then applying 

bending moments along the clamped edges by the applied distributed transverse load. Timoshenko and 
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Woinowsky-Krieger’s solution were adapted to the same problem of plates, simply supported at x = 0, x = 2a 

and clamped at ,y b   and then compared with the solutions in this study. The comparison of the present 

results and the results by Timoshenko and Woinowsky-Krieger are presented in Tables 1, 2, 3, 6, 7 and 8. 

Convergence studies are also presented in Tables 4 and 5. 

 

Table 1: Maximum deflection of SCSC thin plate

4

max ( )mn

pb
w F

D

 
   

 
 

(b < a) 
a/b Present study m=1, 

n=1, Fmn() 

Relative 

error % 

Present study m=1,3, 

n=1,2 Fmn() 

Relative 

error % 

Timoshenko and Woinowsky-

Krieger [10] 

1.0      

1.1 0.03501 4.69 0.03331 0.39 0.03344 

1.2 0.03753 5.18 0.03546 0.62 0.03568 

1.3 0.03963 5.85 0.03713 0.83 0.03744 

1.4 0.04137 7.73 0.03839 0.03 0.03840 

1.5 0.04282 8.35 0.03939 0.45 0.03952 

2 0.04238 1.875 0.04150 0.24 0.04160 

 0.04218 1.39 0.04162 0.05 0.04160 

 

Table 2: Maximum deflection coefficients of Kirchhoff plate with two opposite edges (x = 0, x = 2a) simply 

supported and two opposite edges ( , )y b y b    clamped and subject to uniformly distributed load 

(b < a)     

a
b

  

4

max 0( ) bw F p
D

   

Present study Timoshenko and Woinowsky-Krieger [10] 

1.1 0.03344 0.03344 

1.2 0.03568 0.03568 

1.3 0.03744 0.03744 

1.4 0.03840 0.03840 

1.5 0.03952 0.03952 

2 0.04160 0.04160 

   0.04160 0.04160 

 

Table 3: Coefficients for Maximum Deflection for Kirchhoff plate with two opposite edges (x = 0, x = 2a) 

simply supported and two opposite edges ( , )y b y b    clamped, and under uniformly distributed load p0. 

(b > a)   

b
a

  

4

max 0( )mm
aw F p

D
   

Present study Timoshenko and Woinowsky-Krieger [10] 

1 0.03072 0.03072 

1.1 0.04015 0.04015 

1.2 0.05014 0.05014 

1.3 0.06208 0.06208 

1.4 0.07360 0.07360 

1.5 0.08496 0.08496 

1.6 0.09648 0.09648 

1.7 0.10688 0.10688 

1.8 0.11712 0.11712 

1.9 0.12640 0.12640 

2 0.13504 0.13504 

3 0.18688 0.18688 

   0.20832 0.20832 

 

Table 4: Convergence study of the maximum deflection function (for b < a) 

a
b

  m = 1 

n = 1 

m = 1, 3 

n = 1, 2 

m = 1, 3, 5 

n = 1, 2, 3 

m = 1, 3, 5, 7 

n = 1, 2, 3, 4 

m = 1, 3, 5, 7, 9 

n = 1, 2, 3, 4, 5 

1.1 0.03501 0.03331 0.03346 0.03343 0.03344 

1.2 0.03753 0.03546 0.03565 0.03561 0.03568 

1.3 0.03963 0.03713 0.03737 0.03732 0.03744 

1.4 0.04137 0.03839 0.03869 0.03863 0.03840 

1.5 0.04282 0.03934 0.03971 0.03963 0.03952 

2 0.04238 0.04105 0.04197 0.04177 0.04160 
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   0.04218 0.04162 0.04168 0.04166 0.04160 

Table 5: Convergence study of the maximum deflection function (for b > a) 

a
b

  
m = 1 

n = 1 

m = 1, 3 

n = 1, 2 

m = 1, 3, 5 

n = 1, 2, 3 

m = 1, 3, 5, 7 

n = 1, 2, 3, 4 

m = 1, 3, 5, 7, 9 

n = 1, 2, 3, 4, 5 

1 0.03197 0.03058 0.03071 0.03068 0.03072 

1.1 0.04200 0.04033 0.04048 0.04044 0.04015 

1.2 0.05297 0.05095 0.05113 0.05109 0.05014 

1.3 0.06456 0.06212 0.06235 0.06230 0.06208 

1.4 0.07645 0.07351 0.07280 0.07374 0.07360 

1.5 0.08836 0.08484 0.08520 0.08512 0.08496 

1.6 0.10006 0.09588 0.09632 0.09622 0.09648 

1.7 0.11137 0.10643 0.10697 0.10689 0.10688 

1.8 0.12216 0.11638 0.11703 0.11689 0.11712 

1.9 0.13236 0.12564 0.12643 0.12626 0.12640 

2 0.14192 0.13418 0.13512 0.13492 0.13504 

3 0.20587 0.18406 0.18772 0.18682 0.18688 

  0.20914 0.20828 0.20834 0.20833 0.20832 

 

Table 6: Bending moment coefficients for Kirchhoff plate with two opposite edges (x = 0, x = 2a) simply 

supported, and two opposite edges (y = b) clamped. 

0.30   (b < a) 

a
b

  

2
1 0cxxM p b    

2
2 0cyyM p b   

Present study 
Timoshenko and Woinowsky-Krieger 

[10] 
Present study 

Timoshenko and Woinowsky-Krieger 

[10] 

1.1 0.092 0.092 0.142 0.142 

1.2 0.086 0.086 0.150 0.150 

1.3 0.0812 0.0812 0.1552 0.1552 

1.4 0.0768 0.0768 0.1596 0.1596 

1.5 0.0716 0.0716 0.1624 0.1624 

2 0.0568 0.0568 0.168 0.168 

   0.05 0.05 0.1668 0.1668 

 

Table 7: Bending moment coefficients for Kirchhoff plate with two opposite edges (x = 0, x = 2a) simply 

supported and two opposite edges (y = b) clamped. 

0.30   (b < a) 

b
a

  

2
1 0xxM p a    

2
2 0yyM p a   

Present study 
Timoshenko and Woinowsky-Krieger 
[10] 

Present study 
Timoshenko and Woinowsky-Krieger 
[10] 

1. 0.0976 0.0976 0.1328 0.1328 

1.1 0.1228 0.1228 0.1484 0.1484 

1.2 0.1504 0.1504 0.16 0.16 

1.3 0.1784 0.1784 0.1704 0.1704 

1.4 0.2056 0.2056 0.1792 0.1792 

1.5 0.234 0.234 0.184 0.184 

1.6 0.260 0.260 0.1876 0.1876 

1.7 0.2848 0.2848 0.190 0.190 

1.8 0.3072 0.3072 0.1908 0.1908 

1.9 0.3284 0.3284 0.1904 0.1904 

2 0.3476 0.3476 0.1896 0.1896 

3 0.4576 0.4576 0.1676 0.1676 

   0.050 0.050 0.150 0.150 

 

Table 8: Bending moment coefficients at the middle of the clamped edges. 

b < a 

a
b

  

2
3 0yyM p b   

Present study 
Timoshenko and Woinowsky-Krieger 
[10] 

1.1 –0.2956 –0.2956 

1.2 –0.3084 –0.3084 

1.3 –0.3176 –0.3176 

1.4 –0.3240 –0.3240 

1.5 –0.3288 –0.3288 

2 –0.3368 –0.3368 
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   –0.3332 –0.3332 

 b > a 

b
a

  

2
3 0yyM p b   

Present study 
Timoshenko and Woinowsky-Krieger 

[10] 

1. –0.2788 –0.2788 

1.1 –0.3148 –0.3148 

1.2 –0.3472 –0.3472 

1.3 –0.3752 –0.3752 

1.4 –0.3992 –0.3992 

1.5 –0.4196 –0.4196 

1.6 –0.4360 –0.4360 

1.7 –0.4488 –0.4488 

1.8 –0.4608 –0.4608 

1.9 –0.4696 –0.4696 

2 –0.4764 –0.4764 

3 –0.4984 –0.4984 

   –0.50 –0.50 

 

V. Discussion of Results 
The Galerkin-Vlasov variational method has been applied in this work to determine the deflection 

function and deflection at the centre of a rectangular Kirchhoff plate with two opposite edges ( )y b    

clamped and the other opposite edges (x = 0, x = 2a) simply supported, for uniformly distributed load on the 

entire plate region. The Galerkin-Vlasov variational functional constructed using the product of the eigen 

functions of vibrating simply supported Euler – Bernoulli beams (in the x-direction) and the eigen functions of 

clamped clamped Euler – Bernoulli beams (in the y-direction) is given in Equation (26). The Garlerkin-Vlasov 

variational functional is expressed in general in terms of undetermined displacement parameters wmn of the 

displacement function W(x, y). 

Solving with the aid of the online Mathematica integration software gave the undetermined 

displacement parameter wmn given in Equation (39) and the displacement function given in Equation (45). The 

maximum displacement of the plate was found to occur at the centre of the plate, in line with the symmetrical 

features of the plate and the loading, and is tabulated as Table 1. A comparison  of the maximum deflection of 

the SCSC thin plate with the Timoshenko results shows that for m = 1, n = 1, a relative percentage difference 

exists ranging from 1.39% for plates with aspect ratios of infinity to about 4.5% to square plates. The difference 

between the present study and the Timoshenko results reduced significantly to an average of –0.37% for m = 1, 

3, n = 1, showing the rapidly convergent property of the deflection function Equation (45) obtained in this study 

and showing good agreement with the Timoshenko and Woinowsky’s results obtained using the principle of 

superposition of solutions for simply supported plates and solutions for plates carrying edge bending moments. 

Tables 2 and 3 present the converged maximum deflection solutions in terms of the plate aspect ratios 

obtained in the present study, and compare them with solutions obtained by Timoshenko and Woinowsky-

Krieger [10] for the two cases when b < a, and when b > a. The tables illustrate the excellent agreement between 

the two results for maximum deflection at convergence of the Galerkin-Vlasov solutions. Tables 4 and 5 

presents a convergence study of the behaviour of the series for maximum deflection function (for b < a, and b > 

a) for various aspect ratios. The tables show that convergence is achieved using five terms of m, and n i.e. m = 1, 

3, 5, 7, 9 and n = 1, 2, 3, 4, 5. 

Tables 6 and 7 present the bending moment coefficients for b < a and for b > a and for various plate 

aspect ratios at the center of the plate. The tables illustrate the excellent agreement between the present study 

and the results from Timoshenko and Woinowsky-Krieger [10]. Table 8 presents the bending moment 

coefficients at the middle of the clamped edge for b < a and for b > a for different plate aspect ratios; and 

compares the results with the Timoshenko and Woinowsky-Krieger results. The table shows excellent 

agreement of the present study with the Timoshenko and Woinowsky-Krieger results. 

 

VI. Conclusions 
The Galerkin-Vlasov variational method has been applied in this study to determine the deflection 

function and the maximum deflection of a rectangular Kirchhoff plate with two opposite clamped edges (y = b) 

and the other two opposite edges (x = 0, x = 2a) simply supported. The plate studied was considered isotropic, 

homogeneous, thin, and under small deflections and subject to a uniformly distributed load of intensity p0 on the 

entire plate domain. 

 The displacement shape functions were found using the Vlasov model as the product of the eigen-

functions of a clamped clamped Euler – Bernoulli beam in the corresponding clamped direction and the eigen-
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functions of a simply supported Euler – Bernoulli beam in the corresponding simply supported direction. The 

plate variational functional was then derived using Galerkin-Vlasov methodology and solved to obtain the 

unknown parameters of the displacement field, and hence the displacement field. 

 The maximum deflection and maximum bending moments were found to occur at the centre of the 

plate, satisfying the requirements of symmetry of the plate and the loading. In order to verify and validate the 

results of this study, numerical values of the maximum deflection and maximum bending moments were 

obtained for various plate aspect ratios, and compared with the Timoshenko and Woinowsky solution of the 

same problem. The present results show good agreement with the classical solution obtained by Timoshenko 

and Woinowsky. The effectiveness of the Galerkin-Vlasov method is thus illustrated. The results obtained for 

both the deflections and bending moments were exact solutions. 

(i) The Galerkin-Vlasov method yielded rapidly convergent double series for the deflection function for the 

Kirchhoff plate with opposite edges simply supported and the other edges clamped for the case of uniformly 

distributed load over the entire plate surface. 

(ii) The deflection functions obtained converged to the exact solution for m = 1, 3, 5, 7, 9; n = 1, 2, 3, 4, 5. 

However, satisfactorily accurate results were obtained for m = 1, 3; n = 1, 2. 

(iii) The expressions obtained for bending moments were also rapidly convergent double series, and satisfactory 

results with marginal relative error were obtained using a few terms of the series. 

(iv) Galerkin-Vlasov method gave closed form analytical solutions to the Kirchhoff plate problem considered in 

this study. 
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