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Abstract: Projectile trajectories calculated under non-standard conditions are considered to be perturbed. 

Tools utilized for the analysis of perturbed trajectories are sensitivity functions: effect functions, weighting 

factor functions (WFFs) and appropriate Green’s functions. These functions are used for calculation of meteo 

ballistic elements B (ballistic wind vector wB, virtual temperature B, density B) as well. 
Since 2013 we are working on improving the theory of these functions. We published the improved theory of 

generalized meteo-ballistic WFFs in the journal Defence technology in the year 2016 and then the improved 

theory of projectile trajectory reference heights in the year 2017. Using these theories will improve methods for 

designing firing tables, fire control systems algorithms, and meteo message generation algorithms. 
This contribution complements the previous two articles and is dedicated to the key problems of numerical 

calculations of the sensitivity functions. 
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I. Introduction 
 This contribution follows up on our earlier publications [1 – 7]. For the sake of understanding the 

contents this article, it is, at least, needful to peruse problems of weighting (factor) functions (curves) WFFs 

presented in [4, 6]. The traditional theory of the reference height of a trajectory RHT is elaborated in the article 

[1] predominatinglyunderutilization of the textbook [8]. Our new improved theory of projectile trajectory RHT 

is presented in [6].    
 

1.1 Motivation 
We continue the research with the same theme and therefore our motivation cannot change [1 – 7]: It 

follows from the analysis of artillery fire errors, e.g. [8, 9], that approximately two-thirds of the inaccuracy of 

indirect artillery fire is caused by inaccuracies in the determination of meteo parameters included in the error 

budget model [9]. Consequently, it is always important to pay close attention to the problems of including the 

actual meteo parameters in ballistic calculations [8]. The following meteo parameters μ are primarily utilized: 

Wind vector w, air pressure p, virtual temperature τ, density ρ, and speed of sound a [8, 10 – 18].  
This paper deals only with problems relating to unguided projectiles without propulsion system for the sake of 

lucidity of the solved problems. 
 

1.2 References 
The whole theory of meteo-ballistic sensitivity functions is based on the theory of perturbations [19]. 

Its application in aeromechanics and external ballistics can be found for example in [10 – 16, 18, 20 – 23]. 
 For solutions of perturbed tasks the Green's functionsare very often used, for example [11, 13, 16, 22, 

23]. Only in [22] it is explicitly claimed that these are the Green's functions. Other authors use them as 

“nameless functions”. 
 In external ballistics there are traditionally used [8, 10, 11, 13 – 16] effect functions, weighting factor 

functions (WFFs) and their derivatives instead of the corresponding Green's functions [1 – 7]. 
The perturbation theory is closely connected with the theory of sensitivity of dynamic systems [21, 24]. The best 

way to analyze the characteristics of the projectiles trajectories under nonstandard conditions is the build of any 

of the explicit sensitivity models of projectile trajectory [21, 23, 25, 26]. We then speak about the (differential) 

sensitivity analysis of dynamical system (projectile trajectory) or about the parameter sensitivity analysis or 

about the sensitivity of a system to parameter variations.Without this theory, firing tables cannot be compiled 

and algorithms for the formation of meteorological messages cannot be created [8, 10, 12, 15 – 18, 27 - 31].In 

some books, for example [25, 26], only brief remarks about these problems can be found. 
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List of the notation 
 met parameter (element) 

(y) real or measured magnitude of met parameter  in height y 
r() weighting factor function (curve, WFF) 
QP, QCP effect function 
μSTD(h) met parameter standard course with the height h 
Δ(y) absolute deviation of met element  in height y 
δ(y) relative deviation of met element  in height y 
ΔB absolute ballistic deviation of ballistic element B 
δB relative ballistic deviation of ballistic element B 

 

1.3. The main objectives of the contribution 
We published the improved theory of generalized meteo-ballistic WFFs in the journal Defence technology in the 

year 2016 [4] and then the improved theory of projectile trajectory reference heights in the year 2017 [6]. Using 

these theories will improve methods for designing firing tables, fire control systems algorithms, and meteo 

message generation algorithms. 
 The permissible range of articles did not allow us to deal with the problem of the numerical 

calculations of the sensitivity functions. Therefore, this article complements the previous two articles and is 

dedicated to the key problems of numerical calculations of these functions. 
 The aim of this article is to offer a numerical solution of the following problems: 
1. Efficient calculations of the non-isochronous effect functions – the section 2.   
2. Creating the Garnier‟s and Bliss„ notations of Green‟s functions – the section 3. 
3. To derive a new calculation relationship for the generalized reference height of trajectory – the subsection 

4.1. 
4. To derive new calculation relationships for the ballistic perturbations/deviations B and B – 

the subsection 4.2. 
 An efficient calculation of the non-isochronous effect functions (the section 2) presupposes the finding 

of the decision-making criteria for the completion of the integration of partially perturbed projectile trajectory 

[6] – the relation (8). Simultaneously, we derive relations for the approximate conversion values of an 

isochronous effect function on values of non-isochronous one (the subsection 2.2, relations (16), (17)), and 

subsequently we will explain the problem [6] of exact and strong effects (the subsection 2.3).  
 During the creation of the Garnier‟s and Bliss„ notations [4] of Green‟s functions (the section 3) arises 

the problem of division by zero (the subsection 3.4). We suggest how this complication can be circumvented. 
 We derive a new calculation relationship for the generalized reference height of trajectory (RHT, the 

subsection 4.1, the relation (58)), which bypasses the need for numerical calculation of the first derivative of the 

WFF, determined by the table of its discrete values [6]. 
We derive new computational relations for the ballistic perturbations/deviations B and B (the subsection 

4.2, relations (62), (67)), when we also bypass the need for numerical calculations of the first derivative of the 

WFF, which is determined by the table of its discrete values [6]. 
 

II. Effect And Green’s Functions  
In the whole section we assume, that to calculate the WFFs and Green‟s functions, we use the implicit 

Garnier's algorithm, the principle of which we have clarified in subsections 1.5 and 2.2 of our contribution [4]. 

The algorithm is particularly suitable for the use on fast digital computers. Its main advantage is that it works 

only with the mathematical model of the projectile trajectory (3 or 4 or 6 degree of freedom – DOF) and it is not 

necessary to create neither an appropriate perturbation model nor a sensitivity model of the projectile trajectory. 
The outputs of the Garnier‟s algorithm are the relevant effect functions in the time domain, from which the 

estimates of the WFFs and Green‟s functions are calculated numerically in the second step, again in the time 

domain [4]. 
 

2.1 Definition of Effect functions and Green’s functions in time domain 
The perturbation theory is often used to create appropriate sensitivity models [19, 21, 24]. These are the 

linearized models represented by systems of linear differential equations with variable coefficients. In the case 

of Garnier‟s algorithm this system also exists, but is not presented in the explicit form. 
Relations [4, 6] between generalized inputs (control input variables, disturbance input variables and 

variable parameters of the system) zm(t), m = 1, 2, ...  on the one hand and output variables yl, l = 1, 2, ...  on the 

other hand, are given traditionally by transfer functions and Green's functions gm,l(t – tP) or effect functions 

Qm,l(t – tP). There is also a generalized theory of Green's functions for some groups of non-linear systems.  
In our case [4, 6], we take into consideration only the following generalized inputs: the wind vector 

w = (wx, wy, wz) as a disturbance input variable and next variable meteo parameters (the virtual temperature τ, 
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the air pressure p, the air density ρ and the speed of sound a). All we denote, as we have already noted, by the 

common symbol μ. In the case of other parameters of the model of the projectile trajectory, it progresses as well. 
The most important output variables are the coordinates of the partially perturbed projectile trajectory 

(x, y, z)P and corresponding time of flight t. 
Green's functions are also denoted as weight or weighting functions or influence functions or impulse 

response functions. In the case of sensitivity models of a dynamical system Fig. 1, the Green's functions and 

effect functions represent special sensitivity functions of two parameters (t, tP): 
t  is the moment to which the system response will be calculated. In our case, it is the moment of tPI in 

which the standard projectile trajectory (t, x, y, z)STD passes through chosen point of impact/burst PI with 

coordinates (t, x, y, z)PI. According to its position on the projectile trajectory, we distinguish four types of the 

projectile trajectories (i = 1, 2, 3, 4) – Table 2 in [4]. We have introduced the concept of the “basic trajectory” to 

their definition. The origin of its trajectory is at time t = 0, the top (y = ymax = yS) of its trajectory is at t = tS and 

the point of fall (y = 0) in t = tF. The beginning of the i
th

 trajectory is at the time t = tO,i 0 and its end in the 

chosen point of impact (burst) PI at the time respectively t = tPI,itO,Iand tend,i  tO,i. To simplify the notations, we 

use the relative time tr = t – tO,i.If it does not cause misunderstanding, we will write the relative time tr without 

the index „r“, then simply „t“. The index “r” will be also skipped at other times, such as tP instead of tPr, tPI 

instead of tPIr – Fig. 1, 2. 
tP is the moment in which to impress zm(t – tP) = zm(t) + (+/–) Δzm0(tP)·ε(t – tP), where zm(t) is 

unperturbed quantity, Δzm0(tP) is the amplitude of excitation and the function ε(t – tP) is in the case of the 

calculations of effect functions equal to H(t – tp) (the Heaviside step function) and in the case of the calculations 

Green‟s functions it is equal to (t – tp) – the unit impulse (the Dirac delta function).The plus sign applies for the 

calculation of the positive perturbation and the minus sign for the calculation of the negative perturbation. 
We distinguish three types of trajectories of the projectile: 
- partially perturbed trajectory Fig. 1, if  tPr (0, tPI) and its special variants:   
- (fully) perturbed trajectory, if tPr = 0, i.e. the impulse impresses at the beginning of the i

th
 trajectory (tP = 

tO,i) and  
- the standard (unperturbed) trajectory, if tP ≥ tPI. 
We calculate perturbations in the common moment tend = tPI + tPI. We consider only the isochronous 

perturbation (tend = tPI, tPI = 0) in this subsection – Fig. 1. The non-isochronous perturbations will be discussed 

in the subsection 2.2 – Fig. 2. 

Perturbations are divided in general into the basic and combined. If only one generalized input zm(t), 

m = 1, 2, ... , is the subject to perturbation, then it is the basic perturbation. If two or more generalized inputs are 

the subjects to perturbation at the same time tP, then the combined perturbation it is generated.       

The basic perturbations are the most significant for practice. The most important are listed in the Table 1. The 

most important responses to the basic perturbations – effect functions – are presented in the Table 2. 

 

 
Fig. 1 Partially perturbed trajectory (xP(tP), yP(tP)) and its isochronous perturbations (tPI,t= 0) xPI,t(tP), yPI,t(tP) 

in the point of impact (burst) PI (x(tPI), y(tPI))STD = (xPI, yPI)STD. 
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Fig. 2 Zoom of the Fig. 1 and non-isochronous perturbations (tend = tPI + tPI,γ) xPI,γ(tP), yPI,γ(tP)  in the point of 

impact (burst) PI. 
 

Table 1 

m zm(t) = zm,STD(t) 
= STD(t) zm0(tP) = (tP) Nzm = N = const 

= (B0orB0) 
1 0 wx0 wx0 
2 0 wy0 wy0 
3 0 wz0 wz0 
4 STD(t) 0 0 
5 STD(t) (tP) = 0STD(tP) 0 
6 pSTD(t) p(tP) = p0pSTD(tP) p0 
7 STD(t) (tP) = 0STD(tP) 0 

 

Table 2 

l 
Standard parameters Partiallyperturbedparameters Effectfunctions 

yl(tPI,i) = yl,STD yl(zm0(tP),tP, tend) = yl,end 
QP = QP(tP) = QP(N, tP) 

= yl,end - yl,STD 
1 tPI = tPI,i tend tPI = tPI,i 
2 xPI xend xPI= xPI,i 
3 yPI yend yPI = yPI,i 
4 zPI zend zPI = zPI,i 
5 vx,PI vx,end vx,PI = vx,PI,i 
6 vy,PI vy,end vy,PI = vy,PI,i 
7 vz,PI vz,end vz,PI = vz,PI,i 
8 vPI vend vPI = vPI,i 
9 ΘPI Θend ΘPI = ΘPI,i 

10 ψPI ψend ψPI = ψPI,i 
11 etc. etc. etc. 

Comment: Ground speed vector v= (vx, vy, vz), vx = vcosΘcosψ, vy = vsinΘ, vz = vcosΘsinψ. 
 

The norms for the generalized inputs Nzm = N = (B0 or B0) = const > 0 are listed in the last 

column of the Table 1. In the case of absolute perturbations, it is Nzm = N = B0 > 0; we used in relevant 

expressions index “A” (absolute) in previous articles [1 – 7]. In the case of relative perturbations, it is Nzm = N 

= B0 > 0; we used in relevant expressions index “R” (relative) in previous articles [1 – 7]. See more closely in 

[4]  commentaries to the relation (9) and to the Table 1.  

Because we use the Garnier's algorithm, the effect functions are directly listed in the last column of the Table 2. 

We will use the abbreviated designation QP or QP(tP) or QP(N, tP) for these functions in the further text. See also 

the subsection 2.2 in [4] for their calculation. 

Besides the calculated values QP of the effect functions, their normed (standardized) shapes are also 

used. Three ways of normalization are used in practice [4, 6, 8, 10, 14 – 17, 27]: 
a) Unit effect functions 

     
PPPPPP

1
t,NQ

N
=tR=tR=R μ

μ

ml  . (1) 
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b) Weighting factor functions (curves) – WFFs 
 

     
PP

QQ

PP

1
t,NQ

Nσ
=t,Nr=tr=r μμ 


, (2) 

where 
  NQ = NQNN is the norm for WFF, 
Q = 1 or +1. 
The detailed clarification of the choice of the values NQ a Q see in [6], subsection 1.4.2, and also in [4], 

subsection 2.5.4.  
 

b) Unit effect factor and unit correction factor 
   

     
PP

B

SPSP,PSP,SP, t,NQ
N

N
σ=t,NQ=tQ=Q μ

μ

μ

μ 













 ,   (3) 

where 
S = +1 is for the unit effect factor, 
  S = 1 is for the unit correction factor, 
  NB =const = (BN or BN) > 0 are new standardizing values. The value of BN corresponds to B0 and the 

value BN to B0 – Table 1. More closely in [4]: a comment to the relation (9) and the subsection 1.4.  
The selected values QP,S (Table 2, rows 1, 2, 3, 4) calculated for the fully perturbed  trajectory (tP = tO,i) are given 

in the tabular firing tables  [4, 6, 8, 10, 16 – 18, 27]. 
The Green‟s functions are defined implicitly  

    
PI

P

PPPP d

t

ttg=tR
t

,,
,     (4) 

 

 and so explicitly (does not apply at points where the derivative of the function is not continuous) 
 

 
P

QQ

P

P
P

d

d

d

d

t

r

N

Nσ
=

t

R
=tg

μ














 
 .     (5) 

The further comments on relations (4), (5), (6) are in [4] and a comment to the relation (1) is in [6].  
Absolute ballistic deviation/perturbation B of the ballistic meteo parameter  (e.g. ballistic range/cross wind 

(wx, wz)B, absolute ballistic virtual temperature deviation/perturbation τB, etc.). 

                             


























i,

i,
t

,,μ

i,

i,
t

,,

t

tt,μg
Nσ

N
=

t

t
t

t,μr
tμ=μ

PI

O

PPB0

QQ

P

O

P

P

PB0
PB dd

d

d
,  (6) 

 

where Δμ(t) = μ(t) – μSTD(t)  is the absolute deviations, μ(t) – measured (given) values.  
Analogous relations to (6) also applies for the known (measured) relative deviations δμ(t) (δμ(t) = Δμ(t)/μSTD(t)) 

[4, 6, 8, 16].  
 

2.2 Non-isochronous perturbations 
In practice, preference is given to non-isochronous perturbations from isochronous perturbations [10, 12, 14 – 

18, 27]. 
It is generally assumed that the perturbed trajectory crosses at the moment tend to surface F(x,y,z) = 0, in 

which lies the point of impact (burst) PI. The relevant iso-surface perturbations are calculated from the 

corresponding coordinates – Fig. 2. This surface may represent the ground surface or the surface of a large target 

in the neighborhood of the point PI. 
In practice, the easiest surface is used, and that is the plane which is perpendicular to the plane (x, y) [4, 

10 – 17], so its location is determined by the angle of inclination γ – Fig. 3. We determine, therefore, the iso-

planar perturbations. 
Our task is to derive a rule for termination of the calculation of the perturbed trajectory just in time tend. It holds 

in general (Fig. 3, Table 2)  
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consttan
PI

PI
=

x

y
=γ

γ,

γ,
 .                                                         (7) 

 

Using this relationship, we can create the function 
 

       end,0PPPPend cossin Fγt,t,Nyγt,t,Nx=tF μμ  ,    (8) 

where 

 γyγx=F cossin PIPIend,0   .(9) 

  
After each integration step, we test whether it is Fend(t) = 0, if yes, then t = tend and the calculation ends. In the 

case of isochronous perturbation, it applies explicitly, that tend = tPI. 
  

 
Fig. 3 The schema for the estimation of non-isochronous perturbations (tend = tPI + tPI,γ) xPI,γ(tP), yPI,γ(tP)  in 

the point of impact (burst) PI from the given isochronous perturbations (tPI,t= 0) xPI,t(tP), yPI,t(tP). trSTD – 

standard trajectory,trP – perturbed trajectory, p – plane footprint, it – isochrone. 
 

Table 3 
 γ tPI,γ xPI,γ yPI,γ RPI,γ Perturbation case 
1 γt 0 xPI,t yPI,t RPI,t isochronous perturbation 
2 0° tPI,Y xPI,Y 0 xPI,Y iso-height yPIperturbation 
3 90° tPI,X 0 yPI,X yPI,X iso-range xPIperturbation 
4 εPI tPI,ε xPI,ε yPI,ε RPI,ε iso-angle-of-site εPIperturbation 
5 εPI + 90° tPI,D xPI,D yPI,D RPI,D iso-slant range perturbation 
6 θPI + 90° tPI,m xPI,m yPI,m RPI,m minimal RPI,γ – RPI,mperturbation 

Comment: 1.  2

PI

2

PIPI y+x=D  – slant range (standard value). 

                  2. 








PI

PI1

PI sin
D

y
=ε          – angle-of-site (standard value). 

                  3. 








PI

PI1

PI sin
D

R
=ε D,

  – perturbation of the angle-of-site. 

If we don't need a precise determination of the time tend and the corresponding iso-planar perturbations, we can 

obtain their estimates using a linear extrapolation – Fig. 2, 3 – as follows. 
In the first step we calculate isochronous perturbation (xPI,t, yPI,t, yPI,t, …) – Table 2, and we calculate an 

estimate of the angle of inclination of the isochrone it – Fig. 3 
 

 

t,

t,

t
x

y
=γ

PI

PItan



,(10) 

and the radial isochronous perturbation 
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 2

PI,

2

PIPI, tt,t y+x=R  .        (11) 

 

Furthermore, we assume that approximately applies (Table 2) vx,PI ≈ vy,PI ≈ vz,PI ≈ 0, then next three 

equations hold approximately 
  

γ,x,t,γ, tv+xx PIPIPIPI ≈  ,     (12) 

γ,y,t,γ, tv+yy PIPIPIPI ≈  ,      (13) 

γ,z,tI,γ, tv+zz PIPIPPI ≈   .                                    (14) 

 

By analogy to (11) we define the radial iso-planar perturbation 
 

 2

PI

2

PIPI γ,γ,γ, y+x=R   .   (15) 

 

We determine the solution of equations (12) and (13) (tend = tPI +tPI,γ) 

 

γvγv

γxγy
t

y,x,

t,t,

γ,
cossin

sincos
≈

PIPI

PIPI

PI



  .        (16) 

 

After next adjustment (cos ψ ≈ 1, Table 2), we obtain the alternative relationship  
 
 PI

PI,PI
sin

sin
≈

θγ

γγ
Tt t

tγ,



 ,      (17) 

where  

PI

PI

PI
v

R
=T t,

t,


   is the time constant [s]. 

 
In the second step, we calculate an estimate of the time tend using formula (16) or (17) and relations (12) to (15), 

we calculate estimates of the basic iso-planar perturbations. 
 

 
Fig. 4 The schema for explanation of the exact and strong norm effect problem. It‟s true for exact norm effect 

xPI,γ(tP) = 0 and yPI,γ(tP) = 0 and for strong norm effect xPI,γ(tP) ≈ 0 and yPI,γ(tP) ≈ 0; tP = tO,i, trSTD – standard 

trajectory, trP – perturbed trajectory, it – isochrone. 
 

In practice, isochronous and iso-planar perturbations are the most commonly used. They are listed in 

the Table 3. In the tabular firing tables [4, 12, 14, 17, 27], the times tPI,γ are not adduced, but corresponding 

„fuze setting“ – standard values and unit corrections factors – the relationship (3). More information is in [4], 

the subsection 2.3. 
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2.3 Exact and strong norm effect 
We first discussed the problem of the “norm effect” [15] in [4] (the subsection 2.5.4) and in detail we analyzed it 

in [6] (the subsection 1.4.2). The geometric point of view on the problem lacked in these analyses. We now 

explain briefly this approach with the use of Fig. 3, 4. 
 The problem of the norm's effect applies only to fully perturbed trajectories (tP = tO,i or tPr = 0). Even 

when the norm effect can occur in any of the effect function, historically [15] is discussed for a special selection 

of effect functions from the Table 2, rows 2 and/or 3, so xPI = xPI,i and/or yPI = yPI,i. Even when the norm 

effect can occur in any of the effect function, further we will consider only the above-defined special case. 
 Strong norm effect is defined by the following condition (see Fig. 4) 
 

    0≈2

PI

2

PIOPI γ,γ,i,γ, y+x=tR   .                                             (18) 

 

In the case of the exact norm effect, it applies in (18) the exact equality and the traditional method of 

normalization [4, 6, 15] will be NQ = 0. The consequences are obvious for example from the relations (2), (5), 

(6). 
 Using the linearized relations (12), (13) and (17) we perform a brief analysis of the problem. 
The Exact norm effect can occur in two cases.  
In the first case, except for the relation (18), it holds for the strong norm effect moreover 
 

    0≈2

PI

2

PIOPI t,t,i,t, y+x=tR   . (19)  

 

In the case of the exact norm effect is true in (19) the exact equality. From the relation (17) immediately implies 

tPI,γ ≈ 0, therefore it is a isochronous exact/strong norm effect. 
 In the second case, the relation (19) does not hold even approximately, so tPI,γ ≠ 0. Therefore, it is an 

iso-planar exact/strong norm effect. The determination of the conditions of its occurrence we get them from 

relations (12) and (13) and from the assumption that the relation (18) is true. After adjustment we obtain the 

condition 

PI≈θγt .(20) 

From the relations (16) and (17) in this case, an estimate of the size of the tPI,γ cannot be determined. 

It would be necessary to derive more accurate relationships, which would represent at least a quadratic 

extrapolation. 
 In the Fig. 4, the perturbed trajectory trP2 is shown for which the conditions (19) and (20) do not 

apparently apply, yet it is intuitively obvious that such a case can occur. The linearized relations are not 

sufficient to its clarification. This suggests that it is necessary to deal with problems of exact/strong norm effects 

in even more detail.     
 

III. Effect And Green’s Functions In Vertical Co-Ordinate Domain 
The Effect and Green‟s functions are transformed – for practical reasons [4, 6, 8, 13 – 16, 29 – 31] – 

from the time domain to the vertical co-ordinate y domain. For the derivation of the fundamental relations, the 

appropriate procedure is designed by M. Garnier (Garnier‟s notation) [4, 6, 8, 14, 16], whereas in practice, the 

NATO countries and the former Soviet union use the Bliss„ modification (Bliss„ notation) [4, 6, 8, 13,15, 16, 

31]. 
 In the numerical calculations of the Green's functions g(y), we are faced with the problem of division 

by zero for y = y0. In the subsection 3.4 we will propose a procedure how to work around the problem by using 

the approximation of the generalized Garnier‟s effect function QCG(y) near the point y = y0. An approximation 

can be computed by the method of least squares. 
 

3.1 Definition of generalized Effect and Green’s functions 
For shooting at common trajectories, measured deviations (Δμ, δμ) are evaluated depending on 

coordinate y of the projectile trajectory, thus (Δμ(y), δμ(y)) is used [4, 6, 8, 10, 16, 27 –31]. For a detailed 

explanation see [4] – the subsection 2.5. 
Therefore, it is necessary to modify the relations (1) to (6). We will use the function tP = F(y) valid for 

standard trajectory. It is a one-to-two function. Such an essential failure will be eliminated by deliberating the 

particular dependence separately for the ascending branch (AB)  tP,AB = tP1(y) = FAB(y) and separately for the 

descending branch (DB)   tP,DB = tP2(y) = FDB(y). It holds that tP1(y) tP2(y).  
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 To facilitate algorithm development for following calculations on a digital computer, it is convenient to 

define firstly the generalized Green‟s and effect functions in the time domain [4] – the subsection 2.5.1. 
 We define the generalized Green‟s function by the relationship 
 

    

 



















i,

i,i,

i,i,μ

t>t

t,tttg

t<t=t,t,Ng=tg

PIP

PIOPP

OPPIPCPC

0

∈

0 ,     (21) 

 

where the function g(tP) is given by the relations (4) and (5). The function gC is defined on the interval (– ∞, ∞) 

and usually has a discontinuity of the first kind for the tP = tO,i. For the tP = tPI,i is usually continuous. 
 It applies for the generalized effect function in accordance with the relations (4) and (5) 
 

       

 

















 

i,

i,i,

i,i,

t

,,

μi,μ

t>t

t,tttQ

t<ttQ=ttgN=t,t,NQ=tQ

PIP

PIOPPP

OPOP

P

PPCPIPCPPCP

0

∈

∞
d  .(22) 

 

It applies by analogy to (5) (does not apply at points where the derivative of the function is not continuous) 

   
P

CQQ

P

CP

P

CP
PC

d

d

d

d

d

d1

t

r

N

Nσ
=

t

R
=

t

Q

N
=tg

μμ














 
 ,    (23)  

where  
RCP(tP) is a generalized unit effect function, 
rC(tP) is a generalized weighting factor function (curve). 
 Now, we define generalized effect functions for the ascending branch QCP,AB(y) and for the descending 

branch QCP,DB(y) 
 

         SP1P1CPABCP, ≤ttytQ=yQ  ,    (24) 

         SP2P2CPDBCP, ≥ttytQ=yQ  ,     (25) 

 

where tS is the moment of the projectile passage of the top [(t, x, y, z)S and yS = max y] of the basic trajectory – 

closer the subsection 2.1 and [4] (the subsection 2.5.1). Both functions may contain points where they are not 

smooth. 
 

3.2 Garnier’s notation of generalized Effect and Green’s functions 
The generalized Garnier‟s effect function is defined on the interval ymin, ymax by the relationship [4, 6] 
 

        yQyQ=yQ DBCP,ABCP,CG   .       (26) 

 

This function may contain points at which it is not smooth.  
Generalized Garnier‟s notation of the Green„s function gCG(y) is given by the implicit relation 

      
max

CGCGCG d

y

y

'

μμ y'ygN=y,NQ=yQ  .         (27) 

Hence it follows (not in points where derived function is not smooth) 
 

 
y

r

N

Nσ
=

y

R
=

y

Q

N
=yg

μμ d

d

d

d

d

d1 CGQQCGCG
CG 













 
 ,   (28) 
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where  
RCG(y) is the generalized Garnier„s unit effect function, 
rCG(y) is the generalized Garnier„s weighting factor function (curve). 
The absolute ballistic deviation/perturbation B of the ballistic meteo parameter  – in analogy to the relation 

(6) – is 

 
 

  























 


max

min

B0CG

QQ

max

min

B0CG
B dd

d

d
y

y'y',μg
Nσ

N
=

y

y'
y

y,μr
y'μ=μ

y

μ

y

. (29) 

 

 By combining relations (24) to (26) and (28), to which we add the relations tP,AB = tP1(y) = FAB(y),  

tP,DB = tP2(y) = FDB(y) and dy = vydtP, we derive the following relation for the generalized Garnier‟s notation of 

Green‟s function 

         yg+yg=yg DBCG,ABCG,CG ,   (30) 

where 

 
  
   

 
y

yQ

N
=

ytv

ytg
=yg

μy d

d1 ABCP,

P1

P1C
ABCG,   

 

is the component corresponding to the ascending branch and 

 
  
   

 
y

yQ

N
=

ytv

ytg
=yg

μy d

d1 DBCP,

P2

P2C
DBCG,   

 

is the component corresponding to the descendingbranch. Both components may contain points of discontinuity 

of the first kind. 
 If for some y0 the vertical component of ground speed is vy = 0, then for y = y0 the Green's function 

diverges (gCG(y0)  +/– ∞). Limitations of the influence of this complication on the numerical calculations will 

be discussed in the subsection 3.4. 
 

3.3 Bliss’ notation of generalized Effect and Green’s functions 
The generalized Bliss‟ effect function is defined on the interval ymin, ymax by the relation [4, 6] 

         yQyQ=yQ CGminCGCB   .                (31) 

The generalized Bliss„ notation of Green function is then given by the relation 

      

y

y'ygN=y,NQ=yQ
y

'

μμ

min

CBCBCB d  .      (32)   

It follows from the relations (31) and (32) (it does not apply at points where derived function is not smooth)  
 

   yg=
y

r

N

Nσ
=

y

R
=

y

Q

N
=yg CB

μ

QQCB

μ

CG
CB

CB
d

d

d

d

d

d1














 
  ,  (33) 

where  
RCB(y) is the generalized Bliss„ unit effect function, 
rCB(y) is the generalized Bliss„ weighting factor function (curve). 
The absolute ballistic deviation/perturbation B of the ballistic meteo parameter   – in analogy to the relations 

(6) and (29) – is 

 
 

  























 


max

min

B0CB

QQ

max

min

B0CB
B dd

d

d
y

y'y',μg
Nσ

N
=

y

y'
y

y,μr
y'μ+=μ

y

μ

y

 .    (34) 

 

3.4 Problem of divergence of Garnier’s and Bliss’ notation of generalized Green’s functions 
At the end of the subsection 3.2, we pointed out the fact that the generalized Green‟s function in 

Garnier‟s notation gCG(y) may at some points diverge. It implies from the relation (33) that this problem applies 
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also to the Bliss„ notationgCB(y). We analyze the problem in this subsection and propose a solution that will 

allow a circumventing of the numerical difficulties associated with the mentioned singularities of the function. 
 First, we need to define the conditions under which divergence occurs. The divergence occurs, if the 

vertical component vy of the ground speed of the projectile v (see Comment to the Table 2) is zero (vy = 0), or 

equivalently, if the angle θ is equal to zero (θ = 0). 
 In the 1

st
 trajectory (i = 1, the subsection 2.1) is always vy> 0.  

In the 2
nd 

and the 3
rd

 trajectory (i = 2, 3) is vy = 0 at top of the trajectory, which is identical with the top of the 

basic trajectory, i.e. at the time tS,tSr = tS – tO,i, Fig. 1. In this case, both components gCG,AB(y), gCG,DB(y) diverge 

and therefore also gCG(y) for y = ymax = yS – y(tO,i) = ySr, so, at the end of the interval ymin, ymax. 
 In the 4

th
 trajectory (i = 4) can be vy = 0 only at the beginning of the trajectory t = tO,4, tr = t – tO,4 = 0 

and only under the condition that the angle of departure θ0 is exactly equal to zero (θ0 = 0). In this case, it will be 

exactly valid tO,4 = tS. Simultaneously, it is valid ymax = yS – y(tO,i) = 0 and ymin = yPI,4 – y(tO,4) = yPI,4 – yS< 0. Also 

it is gCG,AB(y) = 0, so the gCG(y)  = gCG,DB(y) and diverges again y = ymax = 0. This variant will be referred to as 

the "special 4
th

 trajectory" for short. 
 It follows from the relation (30) that the function gCG(y) is given by the quotient of two functions, so 

we should apply L'Hospital's rule for the analysis of its divergence. However, we will proceed differently. We 

create the Taylor series for the function gC(tP) in the neighborhood of tP = tS (tSr= tS – tO,i, i = 2, 3, 4) and at the 

same time, we can find an approximation of the course of the vertical component of the speed vy also for the 

neighborhood of the top of the basic trajectory (yS = y(tS)). 
 First, we introduce the relative time by the relationship 

rrs tt=tt=τ S ,   (35) 

 

so, for the ascending branch is  0 and for the descending branch is  0. 
 We will expand the generalized Green‟s function into the Taylor/McLaurent series in the neighborhood 

of the point = 0 and we will leave the first three members of the development 

           …+τg+τg+gτg 2

CCCC 0
2

1
00≈     .  (36) 

Furthermore, we choose a suitable approximation of the course of vy() in the neighborhood of = 0. We assume 

a linear course of the vertical acceleration 
 

    τωg=τj+ga yy  1≈ ,    (37) 

where  
g =g(ymax + hG) > 0 is the acceleration due to gravity at the top of the trajectory [ms

-2
], 

hG is the altitude of the origin of the ballistic coordinate system (x, y, z) [m] 
jy> 0 is the jerk, which approximately expresses the effect of the aerodynamic drag [ms

-3
], 

 = jy/g approximation constant, its value is near zero  ≈ 0 [s
-1

]. 
 The vertical component of the velocity is 









 τ
ω

τg=τgω+τgvy
2

1
2

1
≈ 2

 .  (38) 

The fall in the trajectory is  

   0≤
62

≈ 32 τ
ωg

+τ
g

y   .     (39) 

 We introduce formally 

     0≤1
2

maxmax

2

0 ξy=yy=τ
g

=y 


  ,  (40) 

where ξ = y/ymax 0 and for ymax we choose for the 2nd and the 3rd trajectories ySr and the special 4
th

 trajectory 

abs(ymin). Therefore, it will be in our considerations ξ ≈ 1. So, it is true 
 

      ξT=τ 100   ,     (41) 

where  
g

y
=T max

0

2
  is the time constant [s]. 

 

By combination of the relations (39) and (40) we receive the cubic equation 
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 0≈
33 2

0

23 τ
ω

+τ
ω

τ   .     (42) 

 

From three roots of the equation (42), the following two roots are convenient    
  – for the ascending branch 

    0≤
6

≈≈ 2

0001 τ
ω

+ττ+ττ  ,    (43) 

  – for the descending branch         

  0≥
6

≈≈ 2

0002 τ
ω

++ττ++ττ   .    (44) 

Because 

  2

0

2

0
6

≈
3

1
11

1
≈ τ

ω
τω

ω
τ 





















 . 

  
We substitute step by step the roots of (43) and (44) into (39) and after adjustments we obtain 
  – for the ascending branch 

      







 00AB

2
1≈ τ

ω
+τgvy, ,     (45)   

  – for the descending branch       

     







 00DB

2
1≈ τ

ω
τgvy,  .     

 We substitute step by step the expressions (41) and (43) to (45) into the relation (36) and after 

adjustments we obtain the expressions  
  – for the ascending branch 

    
 

 ξg+g
ξ

g
ξg 


1

1
≈ 21

0
ABCG, ,     (46) 

  – for the descending branch, that is simultaneously the resulting relationship for the generalized Green's 

function in Garnier‟s notation for the special 4th trajectory 

      
 

 ξg+g+
ξ

g
ξg=ξg 


1

1
≈ 21

0
CG,4DBCG,  ,   (47) 

  – for the generalized Green‟s function in Garnier‟s notation for the 2
nd

 and the 3
rd

 trajectories in the accordance 

with the relationship (30) 

 
 

 ξg+
ξ

g
ξg 




12

1

2
≈ 2

0
CG,2,3 ,    (48) 

where 
 

0

0

0
≈

Tg

g
g C


  , 

   







 0

2
0

1
≈1 CC g

ω
+g

g
g   , 

   







 0

3

2
0

2

1
≈ 0

2 CC g
ω

+g
g

T
g   . 

We associate the expressions (47) and (48) into one relationship 
 

    
 

 ξa+a+
ξ

a
ξgCG 


1

1
≈ 21

0
,   (49) 

where  
a0 = g0k0, a1 = g1k1, a2 = g2k2 
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and it holds 
  – for the 2

nd
 and the 3

rd
 trajectories k0 = k2 = 2, k1 = 0, 

  – for the special 4
th

 trajectory k0 = k1 = k2 = 1. 
 It follows from the relations (33), (46) to (49) that the divergence of the generalized Green‟s functions 

in Garnier‟s and Bliss„ notations occurs for y = ymax, (ξ = 1), if g1 ≠ 0, so if gC() ≠ 0 for  = 0. Then 
  – in the case of gC(0) > 0, it is valid gCG(0)  + ∞ ; this is the most common case when we calculate a positive 

perturbation, 
  – in the case of gC(0) < 0, it is valid gCG(0)  – ∞ .   
 If gC() = 0 for  = 0, then abs(gCG(0)) < ∞. The function gC(tP) is in the most cases calculated 

numerically, and so due to the influence of calculation errors, this alternative is mostly numerically unstable. 
 In accordance with the relationship (27), we perform the integration of the relation (49) and after 

adjustment we obtain 

         3210CG 111≈ ξb+ξb+ξbξQ   ,   (50) 

where 

0max0 2≈ aNyb μ   , 

1max1 ≈ aNyb μ   , 

2max2
3

2
≈ aNyb μ   . 

 If the Garnier's algorithm is used for the calculation of the effect functions QP(tP), then the values of the 

generalized Garnier‟s effect function, respectively QCG(y) and QCG(ξ), can be immediately simply counted. In 

this case, we use the relationship (50) as the approximation formula and we approximate the numerically 

calculated course of QCG(ξ) for ξ1. In the case of the 2
nd

 or 3
rd

 trajectories, we put a priori b1 = 0. We can use 

two/three points approximation, or the method of least squares. So, we get estimates of the coefficients bj, j = 0, 

1, 2. 
 Subsequently, we compute from the coefficients bj the estimates of the coefficients aj, j = 0, 1, 2, and 

from them it is possible to determine estimates of the coefficients gj, j = 0, 1, 2. 
 We obtain the course of the generalized Green‟s function in Garnier‟s notation gCG(y) using the 

numerical derivative of the corresponding generalized effect function QCG(y) in accordance with (28). Only for 

values y close to the value ymax, we use for calculations the approximation relationship (49). Thus, we 

circumvent the above-analyzed problem associated with the divergence of the function gCG(y). 
 

IV. Modification Of Selected Functions 
In this section we will use only the Bliss„ notation of  generalized effect functions QCB (y) and Green‟s 

functions gCB(y), as it is usual in NATO countries [13, 15, 29, 31] and countries of the former Soviet bloc [8, 

10]. Thus, we can skip the abbreviation "CB".  
In all the expressions used for the practical calculations, the generalized Green‟s functions g(y) occur, 

or the first derivatives of generalized weighting factor functions (curves) WFFs r‟(y), which are the normed 

Green‟s functions – relationship (33). But this means that in using them we will be forced to solve problems 

with their divergence, which we discussed in the subsection 3.4. 
 Our goal is to adjust these relationships, to use – instead of the generalized Green‟s functions and the 

first derivative of WFFs – the generalized WFFs r(y), which are the normed generalized effect functions Q(y) – 

the relationship (33). This completely avoids the problems associated with the divergence of the generalized 

Green's functions. 
 

4.1 Modification of Reference height of trajectory formula 
In the article [6], we have derived the relation (28) for the normed moments of the first derivative of the 

weighting function WFF r(N,η), so the normed Green's function 

   
 

 

1

0

0,1d
d

d
…,=iη,

η

η,Nr
η=m

μi

iWFF,  ,   (51) 

where 

   

mminmax

min

minmax

min

h

h
=

hh

hh
=

yy

yy
=η












 ,     

where 
h = hG + y is the altitude corresponding to the vertical coordinate of the y, 
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hG             is the altitude of the horizontal plane (x, z), y = 0 of the ballistic system,  
Δh = h – hmin = y – ymin and 
Δhm = hmax – hmin = ymax– ymin. 
 For the modification of the relation (51) (see [6], the relationship (28)), we use the integration by parts, 

whereby we come out of a relationship 

      r'η+rηi=rη ii'i  1
 .                                                     (52) 

 

After performing the integration and adjustment, we get the new relationship  

  …,=i,Mr=m i,i, 0,11 WFFWFF  , (53) 

where 

  

1

0

1

WFF 0,1d …,=iη,η,Nrηi=M μ

i

i, , (54) 

where 
r(1) = rN(Nμ, η)  and η = 1 – value of WFF, r(1)  0, 1. In the case of the traditional normalization, it holds 

always r(1) = 1, more details in [6]. 
 It is true for the first two moments 

 1WFF,0 r=m  , (55) 

      Sr=mWFF 1,1 ,(56) 

where 

 
1

0

dηη,Nr=S=S μWFF  .                                                    (57) 

 In [6] we have derived the relation (39) for the coefficient of the generalized reference height KCR. In 

this relation, we substitute the relation (56) and thus we obtain a new expression  
 

      


















1

01112≈
a

a
rSrη=K CRCR  .                                   (58)  

 

In the case of the traditional normalization (r(1) = 1), it will be  
 

 Sη=K CRCR 12≈  .(59) 

 

This relation has been hitherto derived only semi-empirically [8]. We have reported its derivation in [1] 

– the relation (28) and again in [6] – the relation (66). Now we have presented its correct derivation, from which 

it follows that the relation (59) is valid quite generally, but only when using traditional normalization (r(1) = 1). 

At the same time, we have derived the relation (58), which has a completely universal validity, which is our next 

asset to the theory of reference height of projectile trajectory (RHT).         
 It holds universally for the generalized reference height ([6] – the relation (40)) 
 

     mCRCRCR hK=h=Y   . (60) 

 

The clarification of the whole problem of the RHT can be found in [6]. 
 

4.2 Modification of absolute and relative ballistic perturbation formulas 
It is necessary to modify the expression for the absolute ballistic deviation/perturbation B of the ballistic 

meteo parameter , which is given by the relation (34). The same procedure can be applied for the modification 

of the relations (6) and (29). 
 For the modification of the relation (34), we use the integration by parts and the following relation (as the initial 

one) 

  r'μ+rμ'=rμ
'

 .(61) 

 

After performing the integration and adjustment we get a new relationship  
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   
 

  






 


1

0

B0CBB d11 η'η',μr
dη

ημd
rμ=μ . (62) 

The course of (y) is usually obtained by a measurement, therefore, we recommend to smooth it by the 

filtration in an appropriate way.  
 One of the methods of filtration is averaging [6], and for this purpose we have derived the relation (53) 

analogous to the above relation (34), in which, however, the average size of the quantity (y) is used 

 

      


y

ηημ
η

=yyμ
yy

=yΔμ
y

η

min
0min

AV d 
1

d 
1

 .                    (63) 

In relation (53) of [6], the second derivative of WFF r‟‟(t) performs, therefore we replace this relationship by a 

new one. We go out of the relationship (34). We use for the derivation the following relationship, which was 

originated by the differentiation of the relation (63) 
 

 
   ημημ=

η

ημ
η AV

AV

d

d



  . (64) 

We use repeatedly the integration by parts formula, using relations   
 

  r'μ+rμ=rμ ''
 AVAVAV

(65) 

and 

  r'μ'η+r'μ'η+rμ=rμ'η ''
 AVAVAVAV

 .                              (66) 

 
We use gradually the relations (64) to (66) with the relationship (34) and after adjustments we obtain the final 

relationship for the absolute ballistic deviation/perturbation B of the ballistic meteo parameter  
 

 
 

  






 


1

0

B0CB

red

AV
BB d

d

d
1 η'η',μr

η

ημ
μ=μ ,   (67)  

where 

   
 

  1for    
d

1 AV
AVB =ηηr

dη

ημ
+ημ=μ 







 
 ,   (68) 
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2

AV

2

AV

red

AV

d

d

d

d
2

d

d

η

μμ
η+

η

μμ
=

η

ημ 











 
  .(69) 

 

The procedures used in this section can be applied by analogy to other relationships. 
 

V. Conclusion 
This article concludes the basics of the improved theory of generalized effect and Green‟s functions, as  

special sensitivity functions. 
This theory allows performing an effective sensitivity analysis of the properties of non-standard 

projectile trajectories. The theory is fully linked to the more general theory of sensitivity analysis of dynamical 

systems, so the results can be interpreted in a broader context. 
In the following period, we will deal with applications of this theory to solutions of partial problems 

occurring in the meteo-ballistics. 
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