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Abstract: The present work investigates the influence of the fluid flow velocity and flow direction on the 

velocity of axisymmetric waves propagating in a hollow cylinder containing this fluid. In the context of this 

study, the motion of the cylinder is described by the exact equations and relations of linear elastodynamics, but 

the flow of the fluid is described by the linearized Euler equations for compressible barotropic inviscid fluids. 

Analytical expressions for the sought values containing unknown constants are obtained, and with the help of 

contact and of compatibility conditions, the system of homogeneous algebraic equations with respect to these 

unknown constants is obtained.Using the known procedures, the corresponding dispersion equation is attained. 

This equation is solved numerically, whereupon the dispersion curves are obtained for different values of the 

problem parameters, in particular for the different flow velocities under different flow directions. These 

dispersion curves are constructed for the zeroth and first modes and it is made corresponding analysis of these 

curves, as well as, it is formulated corresponding conclusions. 
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I. Introduction 
 The dynamic pressure of fluids flowing at high velocity in hollow cylinders is used in manyareas of 

modern industry and mining. In addition, the flow of liquid during transportationthrough the pipes (hollow 

cylinders) can sometimes occur at high velocities. In such cases,when applying the ultrasonic wave propagation 

method for nondestructive defect detection inthese pipes, it is necessary to have available theoretical results on 

the influence of the fluidflow velocity on the propagation velocities of the waves in these pipes. In fact, the 

presentwork is devoted to these questions and the influence of the fluid flow velocity on the velocityof 

axisymmetric waves propagating in the hollow cylinder containing this fluid isinvestigated. The investigations 

are carried out within the framework of the exact equationsand relations of elastodynamics, which describe the 

motion of the cylinder, and within theframework of the linearized Euler equations for the inviscid compressible 

barotropic fluids inthis cylinder which describe the flow of this fluid. 

Note that the mathematical modeling of the corresponding more general problems for the casewhen the 

cylinder has inhomogeneous initial stresses induced by the hydrostatic pressureacting on the inner surface of the 

hollow cylinder is described in the paper [1] using the three-dimensional linearized equations and relations of 

the theory of elastic waves in bodies withinitial stresses.[2, 3, 4]. A brief overview of the related research was 

given in the paper [1],therefore, we do not repeat that overview here and readers interested in that overview may 

usethe paper [1].However, in the paper [1] the concrete numerical results are presented and discussed for 

thecase when the fluid is at rest in the cylinder, i.e., for the case when there is no fluid flow in thecylinder. In 

order to answer the questions formulated above, the present work is an attempt tostudy the influence of the fluid 

flow velocity on the velocity of axisymmetric wavespropagating in this cylinder. At the same time, in the 

present work, unlike the work [1], weassume that there are no initial stresses in the cylinder in the initial state. 

 

II. Mathematical formulation of the problem 
Consider the hydro-elastic system consisting of an infinite hollow cylinder and of acompressible 

barotropic inviscid fluid contained in this cylinder. We associate the cylindrical𝑂𝑟𝜃𝑧 and 

Cartesian𝑂𝑥1𝑥2𝑥3(𝑥3 = 𝑧)(Fig. 1) systems of coordinates with the central axis of the cylinder. Like the rules, 

we use the Lagrange and Euler coordinates for describing the motion of the cylinder and fluid respectively. We 

distinguish two states, namely the initial state and the disturbed state of the hydroelastic system under 

consideration, and assume that in the initial state the quantities characterizing the stress-strain state in the 
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cylinder are zero.Let us also assume that the fluid in the initial state flows inside the cylinder with constant 

velocity𝑉0along the cylinder axis (in the𝑂𝑧axis or in the opposite direction to this axis), so that the components 

of the velocity vector of the fluid in the initial state are as follows: 

 

𝑉𝑟
0 = 0, 𝑉𝜃

0 = 0,𝑉𝑧
0 = 𝑉0 = 𝑐𝑜𝑛𝑠𝑡   (1) 

 

 
Fig. 1 The sketch of the hydro-elastic system under consideration: (a) cylinder containing flowing fluid; (b) 

initial pressure and density of the fluid. 

 

The direction of the fluid flow in the initial state is determined by the sign of the values of the velocity 𝑉0, i.e. in 

the cases when𝑉0 > 0(𝑉0 < 0), the fluid flows in the direction of the 𝑂𝑧 axis (opposite to the 𝑂𝑧 axis). 

Thus, we determine the quantities related to the initial state of the hydro-elastic system under consideration 

by the expressions in (1) and assume that after the occurrence of this initial state, the hydro-elastic system 

undergoes a certain dynamical perturbation, as a result of which the axisymmetric waves propagate. It is 

necessary to investigate how this initial state, i.e., the flow velocity 𝑉0, affects the propagation of said waves. 

For this investigation, we use the exact equations and relations of linear elastodynamics and the linearized Euler 

equations to describe the flow of the inviscid compressible barotropic fluid. 

Now we write the corresponding field equations and relations for the cylinder in the cylindrical coordinate 

system 𝑂𝑟𝜃𝑧 under the axisymmetric stress-strain case [2, 3, 4]. 

The equations of motion: 

2

2

1
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The elasticity relations: 

 ( ) ( )( ) 2jj rr zz jj          , ( ) ; ;jj rr zz , 2rz rz     (3) 

The strain-displacement relations: 

r
rr

u

r






, ru

r
  , z

zz
u

z






,

1

2

r z
rz

u u

z r


  
  

   

        (4) 

In (2) – (4) the conventional notation is used. 



The influence of the fluid flow speed on the axisymmetric.. 

DOI: 10.9790/1684-1906015261                                www.iosrjournals.org                                              54 | Page 

For describing the flow of the fluid, according to [5], we use the following linearized field (or linearized Euler) 

equations for barotropic compressible inviscid fluids. 

The linearized continuity equation: 

0
0 0r r z

z

V V V' '
V

t r r z z

 


   
     

            (5)

  

 

Linearized equations of the fluid flow: 

0

0

1 'r r
z

V V p
V

t z r

  
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0

0

1 'z z
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.      (6) 

The state equation: 

2
0

'

'

p
a







.           (7) 

where 𝑎0 is the sound speed in the fluid. 

Note that equations (5) – (7) compose the complete system of equations within the scope of which the flow of 

the fluid in the perturbed state is described.  

Now we add to the foregoing equations corresponding boundary and compatibility conditions. 

The boundary conditions on the external surface of the cylinder are: 

0rr
r R h


 


,  

0rz
r R h


 


        (8) 

The compatibility conditions on the interface surface between the fluid and cylinder, i.e. on the internal surface 

of the cylinder are: 

'rr
r R

p


 
,

0rz
r R





r

r r R
r R

u
V
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
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       (9) 

Finally, we write the condition on boundedness of the quantities related to the fluid at the central axis of the 

cylinder. 

 
0

' , ' , ,r z r
p V V


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         (10) 

Since the perturbations are assumed to be sufficiently small, if the above compatibility conditions are satisfied, 

the difference between the Lagrangian and Euler coordinates is not considered. 

This completes the mathematical formulation of the problem under consideration.  
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III. Method of solution of the formulated problem 

For the solution of the system of equations (2) - (4) we use the classical Lame decomposition (see, e.g., the 

monograph [4]), which can be written for the axisymmetric problems as follows. 
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where the functions 𝛷 and 𝛹must satisfy the following equations: 
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In (12) the notation 1 ( 2 )c     and 2c   is used. 

Representing the functions 𝛷, 𝑢𝑟 , 𝜎𝑟𝑟 , 𝜎𝜃𝜃  and 𝜎𝑧𝑧  with the multiplying 𝑠𝑖𝑛( 𝑘𝑧 − 𝜔𝑡) and   the functions 

𝛹, 𝑢𝑧  and 𝜎𝑟𝑧  with the multiplying 𝑐𝑜𝑠( 𝑘𝑧 − 𝜔𝑡), and denoting the amplitudes of the corresponding quantities 

with the same symbols, we obtain the following equations for the amplitudes of the potentials 𝛷 and 𝛹. 
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where 
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It is know that the solution of the equations in (13) can be presented as follows: 

1 0 2 2 0 2( ) ( )A E r A F r   , 1 0 1 2 0 1( ) ( )B E r B F r        (15) 

where 1A , 2A , 1B  and 2B  are unknown constants and 
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In (16), 𝐽0(𝑥) and 𝐼0(𝑥) are the Bessel and modified Bessel functions of the first kind in the zeroth order, 

however, 𝑌0(𝑥) and 𝐾0(𝑥) are also the Bessel and Modified Bessel functions of the second kind in the zeroth 

order.  

Thus, substituting the solutions in (15) and (16) into the representations in (11), we determine the 

expressions for the displacements and then, using the relations in (4) and (3), we obtain the expressions for the 

stresses. These expressions are: 
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In this way, we determine the displacement and stress field in the cylinder that is in it when waves 

propagate.  

Now we consider the determination of the quotients related to the fluid flow, which also occurs during wave 

propagation in the hydroelastic system under consideration. For this purpose, according to [5], we use following 

representations. 
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Representing the functions 𝑉𝑧 , 𝑝′ and 𝜌′ by multiplying 𝑠𝑖𝑛( 𝑘𝑧 − 𝜔𝑡), and the functions  𝛷𝑓  and 𝑉𝑟  by 

multiplying 𝑐𝑜𝑠( 𝑘𝑧 − 𝜔𝑡), we obtain the following equation from (18) for 𝛷𝑓1 (where 𝛷 = 𝛷𝑓1(𝑟) 𝑐𝑜𝑠( 𝑘𝑧 −

𝜔𝑡)). 
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According to the conditions in (10), the solution to equation (20) is found as follows. 
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where 𝐽0(𝑟3) (𝐼0(𝑟3)) is the first kind Bessel (modified Bessel) function of the zeroth order and 𝐹is a unknown 

constant.  

 Using the expression (21) and substituting 𝛷 = 𝛷𝑓1(𝑟) 𝑐𝑜𝑠( 𝑘𝑧 − 𝜔𝑡) into the equations in (18) we 

obtain the following expressions for the sought values related to the fluid. 
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Note that in (22) 0  shows the density of the fluid in the initial state. 

This completes the determination of the quantities related to the fluid flow in the perturbed state.  

Thus, after the previous preparations, if we substitute the expressions (17) and (22) into the boundary 

conditions (8) and the compatibility conditions (9), we obtain the system of homogeneous linear algebraic 

equations for the unknown constants 1A , 2A , 1B , 2B , and F . If we set the determinant of the coefficient 

matrix of this system equal to zero, we obtain the following dispersion equation. 

2 0 0 0 0 2det( ( / , , / , , / , / )) 0nma c c kR V a h R a c   , ; 1,2,3,4,5n m   (23) 

The explicit expressions of the components 𝑎𝑛𝑚  in (23) can be easily determined from formulas (17) and 

(22) and are therefore not given here. 

 

IV. Numerical results and discussions 

Under obtaining numerical results the dispersion equation (23) is solved numerically by employing the 

―bi-section‖ method. Moreover, these results are obtained for the case where the material of the cylinder is steel 

with the Lame constants 𝜆 = 1.075 × 1011𝑃𝑎, 𝜇 = 0.77 × 1011𝑃𝑎 and with the material density 𝜌 =

7910
𝑘𝑔

𝑚3and the fluid is the water with the sound speed 𝑎0 = 1495
𝑚

𝑠𝑒𝑐
 and with the density 𝜌0 = 1000

𝑘𝑔

𝑚3. The 

main purpose of these numerical results is to investigate how the ratio 𝑉0/𝑎0  affects the dispersion curves 

obtained for different values of  𝑕/𝑅, the meaning of which is shown in Fig. 1.Note that these investigations are 

done for the zeroth and first modes, that is, for the first two lowest modes. Sometimes the mentioned zeroth 

mode is also called the quasi-Scholte mode. Note also that the dispersion  
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Fig. 2. The influence of the fluid flow velocity and direction on the propagation velocity of axisymmetric 

longitudinal quasi-Scholte waves propagating in a hollow cylinder containing this fluid in the cases h/R=0.03 (a); 

0.05 (b); 0.10 (c) and 0.20 (d) 
 

curves mentioned were constructed for the following two cases: Case 1 assumes that 𝑉0/𝑎0> 0 (0.05; 0.10; 0.15; 

0.20; 0.30), i.e., the flow direction of the fluid coincides with the wave propagation direction, but Case 2 

assumes that 𝑉0/𝑎0< 0 (-0.05; -0.10; -0.15; -0.20; -0.30), i.e., the flow direction of the fluid is opposite to the 

wave propagation direction  

Thus, first, we consider the dispersion curves related to the zeroth mode which are obtained in the cases

/ 0.03h R  ; 0, 0.05, 0.1, and 0.2 and shown in Figs. 2a, 2b, 2c, and 2d, respectively. 

Thus, first, we consider the dispersion curves related to the zeroth mode which are obtained in the cases

/ 0.03h R  ; 0, 0.05, 0.1, and 0.2 and shown in Figs. 2a, 2b, 2c, and 2d, respectively. 

From the analysis of these curves, it appears that the character of the influence of the flow velocity 𝑉0/
𝑎0depends not only on the direction of this flow but also on the ratio 𝑕/𝑅 and on the dimensionless wavenumber 

𝑘𝑅. Nevertheless, in all considered cases, at the lower wavenumbers (or at long wavelengths), which are close to 
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the corresponding limits in the above-mentioned Case1 (Case 2), the wave propagation velocity 𝑐/𝑐2 of the 

quasi-Scholte wave increases (decreases) monotonically with the absolute values of the flow velocity. At the 

same time, from the observations of the graphs shown in Figs. 2a, 2b, and 2c, it follows that as the 

dimensionless wavenumber 𝑘𝑅increases, the character of the influence of the fluid flow on the wave 

propagation velocity changes.To be more precise, in the relatively small values of the ratio 𝑕 /𝑅 (for example, in 

the cases 𝑕 /𝑅 =0.03, 0.05, 0.1) there is such an interval for the kR  (denote this interval as [𝑘𝑅1, 𝑘𝑅2]) in 

which, conversely, in Case 1 ( Case 2) the propagation velocity 𝑐/𝑐2 of the quasi-Scholte wave decreases 

(increases) monotonically with the absolute values of the fluid flow velocity. This means that in the cases 

𝑘𝑅 = 𝑘𝑅1 and 𝑘𝑅 = 𝑘𝑅2 the fluid flow has no effect of the fluid flow on the wave propagation velocity. Note 

that in Fig. 2a, 𝑘𝑅2 is not observed because in the case 𝑕 /𝑅 = 0.03, 𝑘𝑅2 appears at 𝑘𝑅, which is greater than 

20, which is considered a high threshold value for 𝑘𝑅 in the present study.The results also show that the values 

of 𝑘𝑅1 and 𝑘𝑅2 also depend on the flow velocity and the difference (𝑘𝑅2 − 𝑘𝑅1)decreases with 𝑕 /𝑅. At the 

same time, it is clear from the results that after a certain value of 𝑕 /𝑅 (for example, at 𝑕 /𝑅 = 0.2 (Fig. 2d) and 

𝑕 /𝑅 > 0.2) the mentioned interval [𝑘𝑅1, 𝑘𝑅2]disappears. In other words, after a certain value of 𝑕 /𝑅 the 

character of the influence of 𝑉0/𝑎0 does not depend on the ratio 𝑕 /𝑅 and in such cases the  

 
a 
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c 

 
d 

Fig. 3. The influence of the fluid flow velocity and direction on the propagation velocity of axisymmetric 

longitudinal waves for the first mode propagating in a hollow cylinder with this fluid in the cases h/R=0.03 (a); 

0.05 (b); 0.10 (c) and 0.20 (d) 
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speed of propagation of the quasi-Scholte wave in Case 1 (Case 2) increases (decreases) monotonically with the 

absolute values of 𝑉0/𝑎0 for all values of 𝑘𝑅 (Fig. 2d). 

We also note that the dispersion curve represented by a dashed line in Fig. 2d for the case 𝑕 /𝑅 = 0.2 and 

𝑉0/𝑎0 coincides with the corresponding curve in [6] and with that in [1]. This situation gives some guarantee of 

the reliability of the numerical results obtained and of the computational algorithm and PC programs used in 

obtaining these results 

In the literature, we have not found related investigations for the case when 𝑉0/𝑎0 ≠ 0 has been carried out 

in the framework of the exact equations of elastodynamics and the linearized Euler equations for compressible 

fluids, in order to compare the present results with them. Note that so far in the corresponding investigations the 

motion of the cylinder has been described by means of the approximate shell theories, in the framework of 

which it is not possible to study the quasi-Scholte waves and the influence of the fluid flow velocity of these 

waves. An example of such investigations can be used the work [7], in which the wave propagation in a buried 

pipe carrying a flowing fluid is studied. 

Let us now consider the results for the first mode obtained in the cases 𝑕 /𝑅 =0.03, 0.05, 0.1, and 0.2, 

shown in Figs. 3a, 3b, 3c, and 3d, respectively. Note that the dispersion curves shown in these figures were also 

obtained in the two cases mentioned above ( Case 1 and Case 2) for the various values of 𝑉0/𝑎0 given above. 

The analysis of these results shows that in the first mode the character of the influence of the flow velocity on 

the curves does not depend on the ratio 𝑕 /𝑅 and on the dimensionless wavenumber 𝑘𝑅 and that in Case 1 (in 

Case 2) under 𝑉0/𝑎0 > 0 (𝑉0/𝑎0 < 0) the flow leads to an increase (decrease) of the wave propagation velocity 

in the first mode. At the same time, the magnitude of this increase (decrease) grows with the absolute values of 

the flow velocity. Note that this result is consistent in a qualitative sense with the corresponding results in the 

paper [7] and recall that only Case 1 is considered in the paper [7]. 

This completes the consideration of the numerical results. 

 

V. Conclusion 

Thus, in the present work, the influence of the flow velocity and the flow direction of the fluid on the 

velocity of axisymmetric waves propagating in a hollow cylinder containing this fluid is studied. In the context 

of this study, the motion of the cylinder is described by the exact equations and relations of linear 

elastodynamics, but the flow of the fluid is described by the linearized Euler equations for compressible 

barotropic inviscid fluids. Analytical expressions for the sought values containing unknown constants are 

obtained, and with the help of contact and appropriate compatibility conditions, the system of homogeneous 

algebraic equations with respect to these unknown constants is obtained. By equating with the zero determinant 

of the coefficient matrix of this system of equations, the dispersion equation is obtained, from which, by 

applying the numerical solution method for this equation, the dispersion curves are constructed for different 

values of the problem parameters, in particular for the different flow velocities under different flow directions. 

The dispersion curves are presented and analyzed for the zeroth and first modes. As a result of these 

analyzes, it is found that in the zeroth mode (i.e., the mode associated with quasi-Scholte waves) the character of 

the influence of the fluid velocity on the wave propagation velocity depends not only on the magnitude of the 

fluid flow velocity, but also on the ratio 𝑕 /𝑅,on the dimensionless wave number 𝑘𝑅, and on the fluid flow 

direction. 

It is also found that in the first mode the influence of the fluid velocity on the wave propagation 

velocity depends only on the magnitude and sign of the flow velocity 𝑉0/𝑎0. In particular, it is found that in the 

case 𝑉0/𝑎0 > 0 (i.e., in the case where the direction of the flow velocity coincides with the wave propagation 

direction), an increase in the values of 𝑉0/𝑎0 leads to an increase in the wave propagation velocity. However, in 

the case 𝑉0/𝑎0 < 0 (i.e. in the case when the direction of the fluid flow velocity is opposite to the wave 

propagation direction), the increase of the absolute values of 𝑉0/𝑎0 leads to a decrease of the wave propagation 

velocity  

The detailed analysis of the mentioned numerical results is described in the text of the paper. 
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