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ABSTRACT 
This project aims to simplify the process of solving the anisotropic plate, with a specific emphasis on the sandwich 

plate with corrugated cores. The Integrated Thermal Protection System's in-plane extensional stiffness and out-

of-plane bending and twisting stiffness are sandwich plates analyzed using a combination of classical laminate 

assumption, parallel axis theory of axis rotation, and structural smearing. The finite series assumption, classical 

laminate theory, and structural smearing are used to determine the bending and twisting moments of the 

Integrated Thermal Protection System, as well as its deflection. A computer program has been developed to handle 

the proposed model more efficiently for the given sandwich construction. To validate the research, the model's 

results are compared to those of other researchers who used finite element methods. The model outlined in this 

work can handle the characterization of any sandwich construction with various corrugation patterns of any 

material. Therefore, this model is utilized to analyze and design sandwich plates with corrugated cores. 
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I. Introduction 
Researchers worldwide are striving to develop innovative materials for construction purposes. Sandwich 

plates with corrugated cores usually display lower bending deflection, high critical buckling loads, high natural 

frequencies and more significant transverse load-carrying capacity compared to monolithic structures of equal 

weight. This proffers an enormous edge in structural usage. These advantages make sandwich constructions used 

in the transportation and industrial sectors. Its applications can be found in bridge decks, grillages, muffin wings 

of aircraft, storage systems, ship panels, vibration attenuation and sound insulation systems, and the packaging 

industries. Several methods available for analysing sandwich plates with corrugated cores are mathematically 

involved owing to their complicated geometry. Several homogenization methods have been evolved to deal with 

the difficulties in the analysis and design of sandwich construction. A review of various homogenization methods 

is presented by Igor et al. (2015), Aleksander et al. (2015), Arthur et al. (2012), Abbes et al. (2010), Talbeietal 

(2009), Buannicet al (2003), Naokiet al (1995). 

In the same vein, various studies have been dedicated to developing alternative approaches, the most 

popular being the equivalent plate method, obtained by relaxing some of the stringent requirements of the 

homogenization method. Some of the authoritative works on equivalent plate models include Huiminetal (2019), 

Jianet al (2018), Young Jo et al (2015), Bartolozziet al (2014), Zhenget al (2014), Bartolozziet al (2013), Wenget 

(2011), Biancoliniet al (2005), Brassouliset al (1986). 

On the other hand, several methods are available for the analytical solution of the bi-harmonic equation 

of transverse bending of the plate to obtain the stresses and displacements for transverse, shear and longitudinal 

loadings based on either the elastic or plastic theory. However, the flexible theories are usually associated with 

rigorous mathematics, while the plastic theories do not adequately track variation in moment, leading to over-

reinforcement in concrete sections and the selection of more significant sections in steel, plastic, timber and other 

non-reinforced concrete materials.  More so, the plastic theories do not predict deflection and can also not show 

clearly how loads are distributed. 

 

II. Governing Equations 
Theoretical Frame Work 

The stiffness of a sandwich plate with a corrugated core for symmetric orthotropic laminated composites 

occurs at the neutral axis. This means that the stiffness matrices of each laminate in the composite need to be 

translated to the neutral axis before being summed up. 

 



Structural Characterization Of Anisotropic Plate Using A Predictive Model. 

DOI: 10.9790/1684-21010107X                         www.iosrjournals.org                                                    8 | Page 

Determination of the Neutral Axis of the Sandwich Plate 

The centroid of the unit cell in Figure 1 is given as: 

ℎ𝑠 =
𝐴𝐵𝑃ℎ𝐵𝑃+𝐴𝑊ℎ𝑊+ 𝐴𝑇𝑃ℎ𝑇𝑃

𝐴𝐵𝑃+ 𝐴𝑊+ 𝐴𝑇𝑃
                                                         (1) 

Where ATP, ABP, AW are the area of the top plate, the area of the bottom plate and the area of the web, respectively 

while 

𝑍𝑇𝑃- hs: is the soffit of the top surface from the centroid y-axis 

𝑍𝑏𝑃 - hs: is the soffit of the bottom surface from the centroid y-axis 

hn : position from the bottom plate to the centroid y-axis 

When the thickness of the bottom plate is equal to the thickness of the top plate 

When the thickness of the bottom plate is equal to the thickness of the top plate 

i.e tBT = tTP = t 

Then, the centroid of the unit cell from the bottom of the unit cell of Figure 1 becomes: 

hs =  𝑡 ⁄ 2 + 𝑑_𝑐 ⁄ 2                                                                                           (2) 

 

 
Figure 1: A Unit Cell of the Corrugated Core for Determination of Neutral Axis. 

 

Constitutive Equations 

In Figure 1, the sandwich plate has multiple layers of material, each with different levels of stiffness. We 

use the parallel axis theorem to properly analyse the plate to transform the stiffness values from each layer's axis 

to a common axis. This allows us to accurately account for the stiffness of each layer in the overall 

analysis.(𝐴𝑖𝑗
∗ , 𝐵𝑖𝑗

∗ , 𝐷𝑖𝑗
∗ ). 

 

In-plane Extensional Stiffness Model 

The In-plane Extensional Stiffness of a sandwich plate with corrugated cores (as shown in Figure 1) 

equals the sum of the In-plane Extensional Stiffness of the individual face plates and the corrugated cores. This 

means that the A matrix for the sandwich plate with corrugated cores, which is the In-plane extensional stiffness 

per unit width, is obtained by adding the terms of the face plates and the corrugated cores considered separately. 

[𝐴𝑆∗
𝐼𝐽]

𝑒𝑞𝑢𝑖..
=[𝐴𝑖𝑗]

𝐹𝑎𝑐𝑒𝑠
+ [𝐴̅𝑖𝑗]

𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠..
                                                            (3) 

With the subscript ij denoting the ij element of the A matrix, also the corrugated cores in-plane 

extensional stiffness can be defined as: 

[𝐴̅𝑖𝑗]
𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠..

= 𝑛𝑐[𝐴𝑖𝑗]
𝑐𝑜𝑟𝑒𝑠

                                                           (4) 

Where nc is a corrugated core factor and for the in-plane extensional stiffness, the factor is n/a in the 

𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 direction, 1/2f in the 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 1 in the in the diagonal and twisting direction. 

Where; 

a, n and f are the length in the longitudinal direction, the number of the laminae in a laminate and the 

distance of the web from either side of the bottom plate of the unit cell. 

From the parallel axis for axis rotation equation 4 becomes; 

[𝐴̅𝑖𝑗]
𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠..

=𝑛𝑐𝑠𝑐[𝐴′′
𝐼𝐽]

𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠
                                                               (5) 

And the in-plane extensional stiffness of the face plates is given as: 

[𝐴𝑖𝑗]
𝑓𝑎𝑐𝑒𝑠

 = [𝐴𝑖𝑗]
𝑓𝑇𝑃

   +[𝐴𝑖𝑗]
𝑓𝐵𝑃

                                                                 (6) 

Substituting equations 5 and 6 into equation 3 yields the in-plane extensional stiffness of the sandwich 

construction given in equation 7. 

[𝐴𝑆∗
𝐼𝐽]

𝑒𝑞𝑢𝑖..
= [𝐴𝐼𝐽]

𝐹𝑇𝑃
+ [𝐴𝐼𝐽]

𝐹𝐵𝑃
+ 𝑛𝑐𝑠𝑐[𝐴′′

𝐼𝐽]
𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠

                                              (7) 
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Bending and Twisting Stiffness model 

The Bending Stiffness of the sandwich plate with corrugated cores is equivalent to the sum of the Bending 

Stiffness of the individual face plates and the corrugated cores. This means that the D matrix for the sandwich 

plate with corrugated cores, which is the bending and twisting stiffness per unit width, is giving by the sum of the 

corresponding terms of the face plates and the corrugated cores considered separately. 

[𝐷𝑆∗
𝐼𝐽]

𝑒𝑞𝑢𝑖..
=[𝐷𝑖𝑗]

𝐹𝑎𝑐𝑒𝑠
+  [𝐷̅𝑖𝑗]

𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠..
                                                                 (8) 

With the subscript ij denoting the ij element of the D matrix, also the corrugated cores bending and 

twisting stiffness can be defined as: 

[𝐷̅𝑖𝑗]
𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠..

=𝑛𝑐[𝐷𝑖𝑗]
𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠

                                                                  (9) 

Where nc is a corrugated core factor and for the bending stiffness, the factor is 1/a in the 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 

direction, 1/2f in the 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 1 in the in the diagonal and twisting direction. 

From the parallel axis theorem for axis rotation equation 9 becomes; 

[𝐷̅𝑖𝑗]
𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠..

=𝑛𝑐 (
𝑠𝑐

3

12
sin2 𝜑 [𝐴′′

𝐼𝐽] + 𝑆𝑐[𝐷′′
𝐼𝐽])

𝑐𝑜𝑟𝑟.𝑐𝑖𝑟𝑒𝑠
     (10) 

And the bending and twisting stiffness of the faces can be defined as: 

[𝐷𝑖𝑗]
𝑓𝑎𝑐𝑒𝑠

 = [𝐷𝑖𝑗]
𝑓𝑇𝑃

   +[𝐷𝑖𝑗]
𝑓𝐵𝑃

                                                                           (11) 

substituting equations 10 and 11 into equation 8 yields the bending and twisting stiffness of the sandwich 

construction given in equation 12. 

[𝐷𝑆∗
𝐼𝐽]

𝑒𝑞𝑢𝑖..
= [𝐷𝐼𝐽]

𝐹𝑇𝑃
+ [𝐷𝐼𝐽]

𝐹𝐵𝑃
+ 𝑛𝑐 (

𝑠𝑐
3

12
sin2 𝜑 [𝐴′′

𝐼𝐽] + 𝑆𝑐[𝐷′′
𝐼𝐽])

𝑐𝑜𝑟𝑟.𝑐𝑖𝑟𝑒𝑠
    (12) 

Where the subscripts F𝑇𝑃 𝑎𝑛𝑑 𝐹𝐵𝑃 ,  are the face of the top plate and face of the bottom plate of the 

sandwich plate respectively, while, ℎ𝑇𝑃, ℎ𝐵𝑃  𝑎𝑛𝑑 𝜑 are the seperation between the centre of the top plate to neutral 

axis,the separation between the bottom plate to the neutral axis and the angle of inclination of the web. 

Equations 7 and 12, are used to evaluate the in-plane extensional stiffness, and the bending stiffness in 

the problem coordinate system for the unit cell in Figure 1. 

For balanced laminate and symmetric lamina about its mid plane, terms in equations 7 and 12 can take 

the form in equations 13 and 14 respectively. 

[

𝐴11
∗ 𝐴12

∗ 0
𝐴12

∗ 𝐴22
∗ 0

0 0 𝐴66
∗

]                                                                              (13) 

[

𝐷11
∗ 𝐷12

∗ 0
𝐷12

∗ 𝐷22
∗ 0

0 0 𝐷66
∗

]                                                                              (14) 

 

The Finite Strip Method 

In SMR method, the twisting moment characterisation in the diagonal strip for deflections, gives results 

which does not compare to classical solution, except the poisons ratios are kept at zero. 

This method is an elastic strip method that considers each term in Bi-harmonic equation separately with 

its amplitude 𝐴𝑥𝐴𝑦 , 𝐴𝑥𝑦𝑎𝑛𝑑𝐴𝑦𝑥as been equal to each other, for the compatibility criterion. It also assumes that, 

the load from the strip length multiplied by the perpendicular to the strip reaching the plate boundaries, are actually 

the load carried by each strip. 

 

From the finite strip method, the following equations holds section. 

𝑓𝑥 =
𝑞𝑥

𝑞
=

𝑛4𝐷11

(𝑛4𝐷11+𝐷22+2𝑛2
𝑥𝑦𝐷𝑥𝑦)

                                                                                     (15) 

𝑓𝑦 =
𝑞𝑥

𝑞
=

𝐷22

(𝑛4𝐷11+𝐷22+2𝑛2
𝑥𝑦𝐷𝑥𝑦)

                                                                                          (16) 

𝑓𝑥𝑦 =
𝑞𝑥

𝑞
=

2𝑏2𝑛4𝐷𝑥𝑦

(𝑛4𝐷11+𝐷22+2𝑛2
𝑥𝑦𝐷𝑥𝑦)𝑙𝑥𝑦

                                                                                          (17) 

 

 

 

         𝑀𝑥 = 𝑓𝑥𝑚𝑥 + 𝑣𝑓𝑦𝑚𝑦                (18) 

𝑀𝑦 = 𝑣𝑓𝑥𝑚𝑥+𝑓𝑦𝑚𝑦     (19) 

𝑀𝑥𝑦 = 𝑓𝑥𝑦𝑚𝑥𝑦     (20) 

   ∆𝑠   = 𝑓𝑥𝑦∆     (21) 

Where 𝑓𝑥, 𝑓𝑦, 𝑓𝑥𝑦 , 𝑚𝑥, 𝑚𝑦 , 𝑚𝑥𝑦 , ∆ and ∆𝑠are the load fraction in the short strip, load fraction in the long 

strip, load fraction in the diagonal strip,  primitive moment in the short span, primitive moment in the long span, 
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primitive moment in the diagonal strip, primitive deflection and deflection in the sandwich plate, while 

𝑀𝑋,  𝑀𝑌 𝑎𝑛𝑑 𝑀𝑋𝑌 𝑎𝑟𝑒 𝑡ℎ𝑒 bending and twisting moments in the sandwich construction. 

And 

𝐷𝑥 = 𝐷11 , 𝐷𝑦 = 𝐷22, 𝐷𝑥𝑦 = (𝐷12 + 2𝐷66), 𝑛 =
𝑙𝑦

𝑙𝑥
 , 𝑛𝑥𝑦 =

𝑙𝑥𝑦

𝑙𝑥
, 

𝑙𝑥𝑦 = √𝑙𝑥
2 + 𝑙𝑦

2
,∆=

5𝑞𝑙4

384𝐸𝐼
,𝑙𝑥 = 𝑎, 𝑙𝑦 = 𝑏 

 

III. Presentation of the Model 
Based on the classical laminate theory, structural smearing and the finite series assumption. 

i. Obtain the in-plane material stiffness from equation (i) of Appendix A 

ii. obtain the transformed stiffness matrix 𝑄̅11, 𝑄̅22, 𝑄̅12, 𝑄̅66, 𝑄̅16,  and 𝑄̅26 from equations (ii) to (vii) in 

Appendix B 

iii. Substitute values from Appendix B respectively into equation (ix) of Appendix C, knowing the thickness 

of constituent plies, gives the in-plane extensional stiffness for the composite laminas. 

iv. Terms in equation 13 (the in-plane extensional stiffness) are resolve by substituting Values from the in-

plane extensional stiffness for the composite laminas. Gotten above into using equations 7, knowing that 

sc = 
𝑑𝑐

sin 𝜑
 

v. Substitute values from Appendix B respectively into equation (x) of Appendix D, knowing the Thickness 

of constituent plies, 𝑡𝑘 ,    𝑎𝑛𝑑 Ž2to get  the bending stiffness of the composite laminas 

vi. Terms in equation 14 (the bending and twisting stiffness of the sandwich construction) are resolve by 

substituting Values from the bending stiffness of the composite laminas gotten above into using equations 

12. 

vii. Compute 𝑙𝑥𝑦 , 𝑛𝑥𝑦 and substitute into equations (15),(16),(17) with values of D11,D22,D12,D66 to get 

𝑓𝑥, 𝑓𝑦, 𝑓𝑥𝑦. 

viii. The values of 𝑓𝑥, 𝑓𝑦 𝑎𝑛𝑑 𝑓𝑥𝑦 are then substituted into equations (18), (19) and (20) to obtain the 

(𝑀𝑥, 𝑀𝑦 , 𝑀𝑥𝑦) bending and twisting moment of the sandwich construction. 

ix. Finally, the deflection of plate is obtained by substituting the strip coefficient 𝑓𝑥𝑦 into equation 21. 

 

IV. Results Using a Numerical Example 
Considering a square ITPS plate shown Figure 2, evaluate the optimal angle of inclination for the greatest 

bending stiffness and minimum centre deflection as well as the out of plane bending and twisting moment, given 

that d = 80mm, tt = 1mm, tb =1mm, tw = 1mm, a = 640mm, b =640mm, P=80mm and the panel is composed of 

four unit cells, made out of graphite epoxy / T7300/934 with 𝐸1 = 138𝐺𝑃𝑎, 𝐸2 = 9𝐺𝑃𝑎, 𝐺12 = 6.9𝐺𝑃𝑎, 𝑣12 =
0.3, with four laminate in each component and a stacking sequence of (0 90⁄ )𝑠 

 

 
Figure 2: Unit Cell for ITPS Panel to be Sought for Membrane and Bending Stiffness 

 

In 2007, Martinez et al. successfully solved this example by utilizing the finite element model to verify 

their findings. In this study, the problem has been solved by introducing the developed model. Tables 1 through 

3 display the results of the computations, which include flexural stiffness, out-of-plane bending, twisting 

moments, and deflections with changes in the angle of inclination of the core. Moreover, the results have been 

visualized in Figures 3 to 14. 
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Table 1: Compressed Values of In-plane Extensional Stiffness and the Inclination of Web for an ITPS 

Sandwich Panel Using Classical Laminate Theory and the Finite Strip Model with that of Martinez 

(2007), for a=0.64, b=0. 

 

Table 2: Compressed Values of Flexural Stiffness VS Inclination of Web for an ITPS Sandwich Panel 

Using Classical Laminate Theory and the Finite Strip Model with that of Martinez (2007), for  a=0.64, 

b=0.64. 

 

Table 3: Computed Deflections and Load Fractions for Varying Angle of Inclination of 

Web of Sandwich Panel 

Angle of Inclination 

Deflection  

Analytical 

Deflection  

Martinez 

Deflection  

FE α Β 𝜸 

       

45 1.253E-08 1.100E-08  0.38824 0.33868 0.10606 

50 1.362E-08 1.65E-08  0.38888 0.33712 0.10642 

52 1.486E-08 1.70E-08 1.74E-08 0.38903 0.33663 0.10655 

60 1.533E-08 1.68E-08  0.38927 0.33522 0.10700 

70 1.551E-08 1.65E-08  0.38923 0.33422 0.10740 

80 1.555E-08 1.66E-08  0.38913 0.33373 0.10763 

90 1.525E-08 1.60E-08 1.652E-08 0.38908 0.33336 0.10771 

 

Table 4: Computed Strip Coefficients and Bending Moments for Varying Angles of Inclination of Web 

Angle of 

Inclination 

of web 

(deg.) 

𝐴11  

Analytical   

108N/m 

𝐴11  

Martinez 

108N/m 

𝐴22  

Analytical 

108N/m 

𝐴22  

Martinez 

108N/m 

𝑨𝟏𝟐 

Analytical 

108N/m 

𝑨𝟏𝟐 

Martinez 

108N/m 

𝑨𝟔𝟔 

analytical 

108N/m 

𝑨𝟔𝟔 

Martinez  

108N/m 

40 
 

 
 

 
    

45 1.7865 2.200 1.479 1.425 0.0543 0.0542 0.138 0.140 

50 1.8146 2.210 1.479 1.435 0.0543 0.0542 0.138 0.140 

52 1.8283 2.215 1.479 1.446 0.0543 0.0542 0.138 0.140 

60 1.8954 2.221 1.479 1.465 0,0543 0.0542 0.138 0.141 

70 2.0055 2.225 1.479 1.477 0.0543 0.0542 0.138 0.141 

75 2.0718 2.230 1.479 1.478 0.0543 0.0542 0.138 0.142 

80 2.1465 2.234 1.479 1.479 0.0543 0.0542 0.138 0.142 

90 2.3246 2.235 1.479 1.479 0.0543 0.0542 0.138 0.142 

Angle of 

Inclination 

of web 

(deg.) 

𝐷11  

Analytical   

105 N.m 

𝐷11 Martinez 

105N.m 

𝐷22  

Analytical 

105 N.m 

𝐷22  

Martinez 

105 N.m 

𝐷12  

Analytical 

105 N.m 

𝐷12  

Martinez 

105 N.m 

𝐷66  

analytical 

105N.m 

𝐷66  

Martinez  

105N.m 

40 
 

 
 

 
    

45 2.2955 2.60 2.2799 2.15 0.08422 0.0877 0.2140 0.2210 

50 2.3598 2.62 2.2806 2.20 0.08422 0.0877 0.2140 0.2210 

52 2.3873 2.63 2.2808 2.22 0.08422 0.0877 0.2140 0.2210 

60 2.5075 2.64 2.2814 2.25 0,08422 0.0887 0.2140 0.2210 

70 2.6816 2.65 2.2819 2.35 0.08422 0.0877 0.2140 0.2210 

75 2.7799 2.76 2.2821 2.37 0.08422 0.0877 0.2140 0.2210 

80 2.8669 2.78 2.2824 2.42 0.08422 0.0877 0.2140 0.2210 

90 3.1324 2.84 2.2828 2.43 0.08422 0.0877 0.2140 0.2210 

Angle of Inclination 

Mₓ 

(N.m) 

My 

(N.m) 

Mₓy 

(N.m) 

45 2.303 E-02 2.295E-02 1.854E-02 

50 2.330 E -02 2.287E-02 1.817E-02 

52 2.341 E -02 2.284E-02 1.810E-02 

60 2.390 E -02 2.271E-02 1.778E-02 

70 2.458 E -02 2.253E-02 1.736E-02 

75 2.494 E -02 2.243E-02 1.710E-02 

80 2.533 E -02 2.233E-02 1.684E-02 

90 2.618E -02 2.210E-02 1.629E-02 
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Figure 3: In-plane Extensional Stiffness 𝑨𝟏𝟏vs Angle of Inclination of Core ∅ for the Analytical Model 

and Martinez (2007) et al. 

 

 
Figure 4: In-plane Extensional Stiffness 𝑨𝟐𝟐 vs Angle of Inclination of Web ∅ for the Analytical Model 

and Martinez (2007) et al 

 

 
Figure 5: In-plane Extensional Stiffness 𝑨𝟏𝟐 vs Angle of Inclination of Web ∅ for the Analytical Model 

and Martinez (2007) et al 
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Figure 6: In-plane Extensional Stiffness 𝑨𝟏𝟐vs Angle of Inclination of Web ∅ for the Analytical Model and 

Martinez (2007) et al. 

 

 
Figure 7: Flexural Stiffness 𝐷11 vs Angle of Inclination of Web ∅ for the Analytical and Martinez (2007) 

eta al. 

 

 
Figure 8: Flexural Stiffness 𝐷22 vs Angle of Inclination of Core ∅ for the Analytical and Martinez (2007) 

et al. 
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Figure 9: Flexural Stiffness 𝐷12 vs Angle of Inclination of Core ∅ for the Analytical and Martinez (2007) et 

al. 

 

 
Figure 10: Flexural Stiffness 𝑫66  vs Angle of Inclination of Core ∅ for the Analytical and Martinez (2007) 

eta al. 

 

 
Figure 11: Deflections vs Angle of Inclination of Web 
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Figure 12: Bending Moment Mₓ vs Angle of Inclination of Web 

 

 
Figure 13: Bending Moment My vs Angle of Inclination of Web 

 

Figure 14: Twisting Moment Mxy vs Angle of Inclination of Web 
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Bending And Twisting Stiffness 

In Figures 7 and 8, it is evident that the Analytical model and Martinez et al.'s (2007) model both show 

an increase in bending stiffness for D11 and D22 with an increase in the angle inclination of the web. Additionally, 

these figures indicate that the Sandwich corrugated panel, with the vertical web, offers the highest value for 

bending stiffness. Meanwhile, Figures 9 and 10 reveal that the angle of inclination of the web has no effect on the 

bending stiffness of DI2 and D66, as observed in both the analytical model and Martinez's model. 

 

Bending And Twisting Moment 

According to Figure 11, an increase in the angle of inclination of the web results in an increase in the 

bending moment in the x-direction. Conversely, Figure 12 demonstrates that an increase in the angle of inclination 

of the web in the y-direction leads to a decrease in the bending moment. Finally, Figure 13 reveals that the twisting 

moment in the twisting direction decreases as the angle of inclination of the web increases. 

 

Minimum Plate Deflection 

The deflection of the sandwich construction at a 90-degree angle of web inclination, as depicted in Figure 

11, shows a difference in percentage between the Analytical model by Martinez et al 2007 and the Finite Element 

Model of 4.7% and 7.7%, respectively. Based on the results from both the analytical and Martinez models, the 

Triangular Truss core may be the preferred choice for this design exploration due to its lower Stiffness to 

Deflection ratio. 

 

V. Conclusion 
The finite element analysis commonly used to analyze sandwich plates can be quite costly when applied 

to a full 3-dimensional structure. However, by assuming that such panels are thick orthotropic plates, analytical 

solutions can be utilized. This method seeks to simplify the complexity of solving anisotropic plates, with a 

particular focus on sandwich plates with corrugated cores. The model, which relies on classical laminates theory, 

structural smearing parallel axis theorem for axis rotation, and finite series assumptions, has produced results that 

are consistent with those obtained by other researchers who used the finite element method to validate their 

findings. 
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