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In this paper we try to find the approximate solution of Exponential Forced Sine Gordon equation by the 

Modified Homotopy perturbation method. We formulate our equation by using the modified homotopy 

perturbation method so as to construct our homotopy equations, which can be solved by a normal integration. 

Then the summations of these solutions give us the final solution of our equation. We found our graphs solutions 

by using Mathematica computer programs which give us a positive and negative soliton solution. 
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I. Introduction 
In this Section we talk about the Modified Homotopy Perturbation Method. In general   the  modified  

Homotopy Perturbation Method proposed for solving the nonlinear differential equation  is based upon a small 

parameter with the Homotopy method one  (He, J.,   1999 a). our process for approximation solution begin  after 

substituting the assumed approximation solution into the homotopy and solving our corresponding equations,.  

Lu, J. (2009), he proposed the Modified Homotopy Perturbation Method for solving sine Gordon 

equation without forcing terms. But in our paper we need to consider the forced terms one.  Lu, J. (2009), in his 

work introduced a small parameter and Taylor series expansion to modify the homotopy perturbation method. 

After that he gets a new analytical approach for solving the initial value problem for the following sine Gordon 

Equation, 

                                                                     )1(0sin  uuu xxtt  

 

Subject to the initial conditions           )(),()(),( 2010 xgtxuxgtxu t   

 

The main feature of his method from the old one has ability to obtain the analytical or approximate solution to 

the Sine Gordon Equation without linearization or discretization process so as to avoid the difficulties of 

calculation which is involved or appears in the polynomials in the old method such as Adomain decomposition 

or the old homotopy method. 

 

II. Approximation Solution without Forcing Terms 
              In this case, it is clear that we also faced equation involve sine u, this makes it very complicated to get 

the solution. To avoid this difficulty, we consider another approach for dealing and solving this equation, on the 

basis of the homotopy perturbation method. We introduce a variable parameter  1,0p  in the Sine Gordon 

equation.  Then equation (1) becomes,  

                                                                               )2(0sin  pupuu xxtt   

          Subject to the initial conditions           )(),()(),( 2010 xgtxuxgtxu t   

 

It is easy to see that when p = 0, equation (2) corresponds to a linear equation, and while when p = 1, it is just 

the original nonlinear one. The parameter p is introduced naturally and not affected by artificial factors. 

Furthermore, it can be considered as a small parameter.  

By applying the modified homotopy perturbation technique, we assume that the solution of equation (2), can be 

expressed in terms of p as follows,   
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Substituting p = 1, the results is the approximate solution of equation (1). 
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To obtain the approximate solution of equation (2), we consider the Taylor series expansion of sin u in the 

following form, 
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 Substituting equation (3) and (5) into (2) and comparing the coefficients of identical degrees of p. Then we get 

the following equations. 
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and so on. Then we solve the above equations by simple integration, we found the values of  43210 ,,,, uuuuu   

and so on.  After that we can get the approximate solution of equation (1) as follows   

         )6(.....3210 nuuuuuu   

Then we can obtain the n
th

 order approximate solutions .It is clear that and very easy to calculate more 

components to improve our final solutions 

  

III. Approximation Solution of our Model with Forcing terms 
In this Section we need to solve our model of equation (7) with Exponential forcing terms and the following 

initial conditions by Modified Homotopy Perturbation Method, 

                                                                                   )7(sin x

xxtt euuu    

           

Subject to the initial conditions,     

                                                                               hxxuxu t sec4)0,(0)0,(  . 

In this case the forcing terms which is equal e
x
 in the form of positive exponential and called the nonlocal 

forcing terms.  Then by modified homotopy perturbation method, we constructed the following homotopy and 

then the equation (7) becomes, 

)8(0sin  x

xxtt pepupuu  

Subject to the initial conditions, hxxuxu t sec4)0,(0)0,(   and where p is small parameter belong 

to [0, 1], and by   applying the modified homotopy perturbation technique, we assume that the solution of 

equation (8) can be expressed in terms of p as follows, 
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Substituting p = 1 in the above equation, the results is the approximate  

solution of equation (7). 
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To obtain the approximate solution of equation (7), we consider the Taylor series expansion of sin u in the 

following form, 
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 Substituting equation (9) and equation (11) into equation (7)  and   then by comparing the coefficients of 

identical degrees of p, we will get the following equations, 
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Solving the above equations by simple integration, we get following results, 

For 0u   values we get the following,  
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      In the same way, more components can be calculated. Then the approximation solution of our equation (7)  

for 3
rd

 order can be  get it in the following form. 
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          All our graphs approximation solutions were   found   by using Mathematica Computer Programs. All 

our graphs showed that the solutions in time t equal 0.5  

             The Figures Bellows shows the solutions of our equation (7) with t values equal 0.5 and differences 

values of x so as to compare between the solutions.  
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Figure: 1 gives the approximate solution of our model of equation (7) with t values equal 0.5 and x between -50 

and 50. 
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Figure: 1 

       

Figure: 2 give the approximate solution of our model equation (7) with t values 

equal 0.5 and x between -5 and 5 
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Figure: 2  

 

 

Figure: 3 give the approximate solution of our model  equation (7) with t values 

equal 0.5 and x between -10 and 10. 
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Figure: 3  
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Figure: 4 give the approximate solution of our model equation (7) with t values 

equal 0.5 and x between -8 and 2. 
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Figure: 4  

All graph solutions of Figure No. 2 and 4 give us full shape of soliton with positive and negative. Figure No. 1 

and 3 gives us only negatives and not completed soliton shapes  

 

IV. Conclusion 
In this paper we studied the approximation solution of Exponential Forced Sine Gordon equation by the 

modified homotopy perturbation method. We found that some of these solutions give us complete form of 

soliton solutions in positive and negative areas and rest solutions one give us uncompleted shape of Soliton with 

negative. The future work will be for another types of Forced terms of Sine Gordon equation one. 
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