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Abstract:   
The study of heat transfer in fins is of utmost importance at a technological level and determining the effectiveness 

of the design can be expensive due to the need for experimentation.   This article comparatively presents the 

results obtained from the analysis of a fin subjected to convection by different methods, namely physical 

experimental, mathematical modeling and simulation by Ansys® Software.   The results reflect a very acceptable 

coherence between them which determines that the simulations made with the help of the computer (finite element 

methods) are a faithful reflection of the physical experiment and the theory that supports the phenomenon.   It is 

concluded that simulations are a very good option for estimating the behavior of a heat transfer phenomenon, 

thereby avoiding the complicity of the mathematical model and the cost of the experimental model. 
Background: Experimental and theoretical methods applied to real phenomena that can be very complicated or 

expensive, these can be replaced by computer simulation methods, Ansys, a software for analysis on PC, is a good 

option.   In this software you do not have to have advanced knowledge of the subject to carry out a simulation, 

only the boundary conditions are enough (in the case of heat transfer phenomena).   The simulation is a fast and 

efficient calculation and can be repeated for different models or conditions. 

Materials and Methods: The cylindrical fin shown in the previous figure will be considered.   The cross-sectional 

area is 𝐴𝑐 = 𝜋𝑅2, where 𝑅 is the radius of the glaive and the perimeter is 𝑃 = 2𝜋𝑅. Both 𝐴𝑐 and 𝑅 are uniform, 

that is, they do not vary along the fin in the 𝑥 direction (fin length). 

Results: The empirical relationships used in this article to determine convective coefficients are very close to each 

other and are verified from the experimental results, since using these convective coefficients in simulation and 

theory, curves are graphed very close to each other. 

Conclusion: The methods used yield results with errors no greater than 2% compared to the theoretical methods 

and no greater than 7% with respect to the experimental ones. The largest errors recorded in the bars (between 

the experimental with Ansys or theory) were due to the fact that the screw that held the wooden plug (insulated 

end) to the fin was transferring heat to the outside. This is observed because the slope of the graph in the last 

points of the graph do not have a value of zero (as the theory would predict due to the insulation) and since the 

cross section in the copper was smaller than in the aluminum, this negative slope is accentuated even more since 

in proportion it affects the copper more (better conductor) than aluminum. 
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I. Introduction 
A fin is an aggregate of material that is placed on a surface that transfers heat.   This addition allows for 

increased heat transfer to the medium surrounding the surface.   Some examples of fins are those used to cool 
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electronic components and in automobile radiators.   Analyzing, the fins increase the transfer area which helps 

dissipate heat more quickly.   The drawback of a fin is observed in that the added area does not transfer heat like 

the original surface, since as is known, to transmit heat from one medium to another there must be a temperature 

difference between said mediums (the greater the difference the more heat is dissipated), and in a fin there is a 

distribution of temperatures along it with the highest temperature near the original surface and the lowest at the 

end. This fact makes a fin interesting for study since in general it is desired to optimize the material used to transfer 

heat to the maximum.    

Generally a fin is thin in some direction, which results in the fact that there are no important temperature 

variations in that direction, then assuming conduction along the fin as if it were one-dimensional, thus simplifying 

the analysis.   In this work, in addition to the comparison between the results of the methods that determine the 

temperature distribution, the results of different existing algorithms that obtain the convection heat transfer 

coefficient and the results were compared, based on experimental data. yielded by a method proposed in this 

article to obtain the real convective coefficient from the experimental temperature distribution, the formal relations 

for heat transfer in a needle fin and the use of least squares. 

 

II. Development 
Theoretical Analysis 

 
Figure 1: Cylindrical bar Obtained from reference 

 

Obtaining the differential equation and boundary conditions 

 The cylindrical fin shown in the previous figure will be considered.   The cross-sectional area is 𝐴𝑐 =
𝜋𝑅2, where 𝑅 is the radius of the glaive and the perimeter is 𝑃 = 2𝜋𝑅. Both 𝐴𝑐 and 𝑅 are uniform, that is, they 

do not vary along the fin in the 𝑥 direction (fin length).   The principle of conservation of energy is applied to an 

element of the fin between the points 𝑥 and 𝑥 + ∆𝑥 (see previous Figure 1).   Heat can enter and leave the element 

by conduction along the fin and can also be lost by convection ( ℎ𝑐) from the surface of the element at temperature  

𝑇 to the surrounding fluid at temperature 𝑇𝑒. The area of the element is 𝑃 ∗ ∆𝑥; therefore,  

 

𝑞𝐴𝑐|𝑥 − 𝑞𝐴𝑐|𝑥+𝛥𝑥 − ℎ𝑐𝑃𝛥𝑥(𝑇 − 𝑇𝑒) = 0 

  

Dividing by ∆𝑥 and doing 𝛥𝑥 → 0 (differential element) we obtain 

 

                                                                 −
𝑑

𝑑𝑥
(𝑞𝐴𝑐) − ℎ𝑐𝑃(𝑇 − 𝑇𝑒) = 0                                                      (0) 

For a cylindrical fin, Ac is independent of x; using Fourier's law 

 

                                                                  𝑞 = −𝑘
𝑑𝑇

𝑑𝑥
    where 𝑘 is the thermal conductivity. 

keeping 𝑘 constant, we obtain 

 

                                                           𝑘𝐴𝑐
𝑑2𝑇

𝑑𝑥2 − ℎ𝑐𝑃(𝑇 − 𝑇𝑒) = 0                                                                         (1) 
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which is a second-order ordinary differential equation for 𝑇 = 𝑇(𝑥). Assuming conduction along the fin 

as a one-dimensional process causes convective heat loss from the sides of the fin to appear in the differential 

equation.   Now it is necessary to know the boundary conditions for equation (1) Since we want to study the 

behavior of the fin itself and we have the temperature condition at the end (see experiment) 

 

                                                            𝑇|𝑥=0 = 𝑇𝐵                                                                      (2) 

 

At the other extreme, the fin loses heat due to Newton's law of cooling 

 

                                               −𝐴𝑐𝑘
𝑑𝑇

𝑑𝑥
|

𝑥=𝐿
= 𝐴𝑐ℎ𝑐(𝑇|𝑥=𝐿 − 𝑇𝑒)                                               (3a) 

 

where the convection heat transfer coefficient is, in general, different from that of the lateral faces of the 

fin because the geometry is different. However, since the area of the end AC is small and in our experiment it was 

isolated with a piece of wood, it is concluded that 

 

                                                                
𝑑𝑇

𝑑𝑥
|

𝑥=𝐿
≅ 0                                                                    (3b) 

 

Furthermore, this boundary condition is easier to use than equation (3a).  

 

Temperature Distribution 

To make the algebraic manipulation simpler, we take 𝜃 = 𝑇 − 𝑇𝑒 and 𝛽2 =
ℎ𝑐𝑃

𝑘𝐴𝑐
 where  

𝐻𝑐  = convective coefficient 

𝑃 =Fin perimeter 

𝑘 =Thermal conductivity 

𝐴𝑐 =Transverse area to the heat flow in the fin  

 

then equation (1) becomes 

 

                                                                                
𝑑2𝜃

𝑑𝑥2 − 𝛽2𝜃 = 0                                                                                      (4) 

 

For constant 𝛽, equation (4) has the solution 

 

𝜃 = 𝐶1𝑒𝛽𝑥 + 𝐶2𝑒−𝛽𝑥 

 

or well 

 

𝜃 = 𝐵1𝑠𝑒𝑛ℎ(𝛽𝑥) + 𝐵1 𝑐𝑜𝑠ℎ(𝛽𝑥) 

The second form turns out to be more convenient; therefore, we have 

 

                                                                     𝑇 − 𝑇𝑒 = 𝐵1𝑠𝑒𝑛ℎ(𝛽𝑥) + 𝐵2 𝑐𝑜𝑠ℎ(𝛽𝑥)                                            (5) 

 

Using the two boundary equations [(2) and (3b)] two algebraic equations are obtained for the unknown constants 

𝐵1 and 𝐵2 

 

𝑇𝐵 − 𝑇𝑒 = 𝐵1𝑠𝑒𝑛ℎ(0) + 𝐵2 𝑐𝑜𝑠ℎ(0);   𝐵2 = 𝑇𝐵 − 𝑇𝑒 
𝑑𝑇

𝑑𝑥
|

𝑥=𝐿
= 𝛽 = 𝐵1𝑠𝑒𝑛ℎ(𝛽𝐿) + 𝐵2 𝑐𝑜𝑠ℎ(𝛽𝐿);   𝐵1 = −𝐵2 𝑡𝑎𝑛ℎ(𝛽𝐿) 

Substituting 𝐵1 and 𝐵2 in equation (5) and reordering we obtain the temperature distribution along the fin.   This 

equation is what will be called the theoretical equation. 

 

                                                      
𝑇−𝑇𝑒

𝑇𝐵−𝑇𝑒
=

𝑐𝑜𝑠ℎ[𝛽(𝐿−𝑥)]

𝑐𝑜𝑠ℎ[𝛽𝐿]
 where 𝛽 = √

ℎ𝑐𝑃

𝑘𝐴𝑐
                                                            (6) 

 

Determination of convection coefficients 

 There are numerous empirical relationships in the literature for determining average free convection heat 

transfer coefficients. The following functional represents this phenomenon for different circumstances 
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                                                               𝑁𝑢𝑓 = 𝐶              (𝐺𝑟𝑓𝐺𝑟𝑓)𝑚                                                                   (7) 

 

where the subscript f indicates that the properties in the dimensionless groups are evaluated at the film 

temperature and furthermore, given that the Grashof (𝐺𝑟𝑓) and Prandtl (𝐺𝑟𝑓) numbers have a characteristic 

dimension, this will vary depending on the problem to be studied: for a vertical plate is the height of the plate 𝐿 

and for our case, that is, a horizontal cylinder, it is considered as 𝑑 (diameter). The mathematical definition of 

these numbers is shown below. 

 

And since the average Nusselt Number (𝑁𝑢) has the following mathematical definition, having the other 

variables and the Nusselt Number (by equation 11) we can solve for the average convective coefficient ℎ𝑐  

 

                                                                               𝑁𝑢𝑑 =
ℎ𝑐𝑑

𝑘
                                                                               (8) 

 

The Grashof number can be physically interpreted as a dimensionless group that represents the ratio of 

buoyancy forces to viscous forces in the free convection flow system and is defined as  

 

                                                                               𝐺𝑟 =
𝑔𝛽(𝑇𝜔−𝑇∞)𝑑3

𝜈2                                                                     (9) 

where  

𝛽 = the inverse of the absolute temperature [𝐾] at which the film is 

𝑇𝜔 = surface temperature 

𝑇∞ = temperature in the convective medium 

𝜈 = Kinematic viscosity (of the air in our experiment)  𝜈 

𝑑 = diameter 

𝑔 = gravity 

 

The Prandtl number is a dimensionless parameter that relates the relative thicknesses of the 

hydrodynamic and thermal boundary layers.   The kinematic viscosity of a fluid carries information about the 

speed at which momentum can diffuse through the fluid due to molecular motion. In short, it is the link between 

the velocity field and the temperature field and is mathematically defined as: 

 

                                                                                𝑃𝑟 =
𝑐𝑝𝜇

𝑘
                                                                                (10) 

where  

 

𝜇 = Dynamic viscosity (of the air in our experiment) 

𝑘 = thermal conductivity (of the air in our experiment) 

𝑐𝑝 =Specific heat at constant pressure (of air in our experiment) 

 

 Once the necessary parameters have been defined to find the convective coefficient, we also have the 

mathematical definition of the Nusselt number (alternative to (8)) for horizontal cylinders found in the 

bibliography [2]. 

 

                                                       𝑁𝑢𝑑 = 0.60 + 0.387 {[
𝐺𝑟𝑑𝑃𝑟

[1+
0.559

𝑃𝑟
9

16

]

]
1

6}                                                                              (11) 

 

Furthermore, as an alternative relationship to the previously explained study, there is another simplified 

formula for horizontal cylinders.   This formula will be used to obtain the value through another method. 

 

                                                        ℎ = 1.32 (
𝛥𝑇

𝑑
)

1
4⁄

                                                                    (12) 

 

where  

 

𝛥𝑇 is the temperature difference between the surface and that of the fluid 

𝑑 is the diameter of the fin 
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Experiment 

Characteristics 

 In the experiment, two cylindrical fins made of different materials were analyzed on a test bench: 

aluminum (diameter 1”) and copper diameter (0.5”).   The fins are recessed at one end and set into an acrylic 

frame at the other end.   The embedded end is located inside a tank where there is water vapor in such a way that 

using a thermometer that is inside the tank the temperature is measured at one end, the other end has as a boundary 

condition that it does not transfer heat since it was placed a wooden plug screwed to the fin at the end. In addition, 

along the fin there are 9 holes placed at different distances, in which the temperature can be sensed with the help 

of a thermocouple that reflects the temperature with the help of a multimeter that works as a transducer and digital 

encoder. In order to compare methods for determining convective coefficients, it was decided to place a semi-

insulating medium (cotton for healing) around the entire length of the fin with an approximate thickness of 1” 

radial. 

 

Procedure 

 Once the cotton was placed, it was decided to open the valve that allows the steam to pass to the chamber 

in which the end of the fin is located.   The temperature was stabilized by maintaining a constant pressure with 

the help of the reading of a dial manometer and we waited until the phenomenon was no longer transient (repeated 

measurements were made over time until the temperature values did not change) for approximately 2 hr. In a 

permanent state, the measurements corresponding to each point along the metal fin were taken, the distances at 

which the test holes are located and the diameters of each of the metal rods (fins) were measured and finally the 

the temperature on the surface of the cotton (at the ends) in order to obtain the average convective coefficients. 

 

Used materials 

 Aluminum bar with a circular cross section with a diameter of 1” and a length of 88 cm. 

 Copper with a circular cross section with a diameter of 1/2” and a length of 88 cm. 

 Thermocouple zone 

 Steam service 

 Dial temperature and pressure gauges 

 Cotton 

 Scotch tape 

 Measuring tape 

 

The following figures reflect the test bench and the fins 

 

 
Figure 1: Test bench and fins 
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Simulation  

 The fin was modeled as a 3-dimensional solid partial cylinder (see figure).   At one end there was a 

constant temperature condition and at the other an insulated end. The curved wall is where the convective load 

was applied and the flat side faces were considered insulated (heat flux = 0), since as the fin has the same radial 

temperature distribution, there is no heat transfer to the other body of the fin.   A partial cylinder was decided 

since, as the academic version was used, it only allows the use of a small number of nodes that, having used the 

entire cylinder, would have been exceeded. 

 

III. Results 
Theoretical Analysis 

 Since the theoretical temperature distribution is given by the following form and the only unknown 

variable is ℎ𝑐, different methods (mentioned in the theoretical development) were tested to determine it. 

 

𝑇−𝑇𝑒

𝑇𝐵−𝑇𝑒
=

𝑐𝑜𝑠ℎ[𝛽(𝐿−𝑥)]

𝑐𝑜𝑠ℎ[𝛽𝐿]
    where   𝛽 = √

ℎ𝑐𝑃

𝑘𝐴𝑐
 

 

Applying the Churchill and Chu equation for wide ranges of 𝐺𝑟𝑃𝑟 r in horizontal cylinders and the 

simplified method, the following data are obtained: 

 

Aluminum Facts 

Temperature at x = 0 on the cotton [ºC] 33 

Temperature at x = 88 cm on cotton [ºC] 26 

Average temperatures on cotton [ºC] 29.5 

Temperature difference between average and ambient  (Tω-T∞) [ºC] 10.5 

Beta β[K-1] 0.00331 

g (gravity) [m/s2] 9.78 

ν = Kinematic viscosity (of the air in our experiment) [m2/s] 15.68 

d = diameter (includes cotton) [m] 0.0762 

Grashof 611615 

μ = Dynamic viscosity (of the air in our experiment) [kg/m s  *105] 1.983 

k= thermal conductivity (of the air in our experiment)  [ W/mºC] 0.02624 

Cp =Specific heat at constant pressure (of air in our experiment) [kJ/kgºC] 1.0057 

Prandtl 0.708 

Grashof per PrandtlGr*Pr 4.33*105 

Nuselt Nu using (11) 11.52 

Solving for hc of (8) [W/m2K] 3.97 

Hc using (12) [W/m2K] 4.52 

Average  hc’s [W/m2K] 4.24 

 

Copper Facts 
Temperature at x = 0 on the cotton [ºC] 35 
Temperature at x = 88 cm on cotton [ºC] 25 

Average temperatures on cotton [ºC] 30 
Temperature difference between average and ambient  (Tω-T∞) [ºC] 11 

Beta β[K-1] 0.003298 
g (gravity) [m/s2] 9.78 

ν = Kinematic viscosity (of the air in our experiment) [m2/s] 15.68 
d = diameter (includes cotton) [m] 0.0762 

Grashof 369575 
μ = Dynamic viscosity (of the air in our experiment) [kg/m s  *105] 1.983 
k= thermal conductivity (of the air in our experiment)  [ W/mºC] 0.02624 

Cp =Specific heat at constant pressure (of air in our experiment) [kJ/kgºC] 1.0057 
Prandtl 0.708 

Grashof per PrandtlGr*Pr 2.62*105 
Nuselt Nu using (11) 10.04 

Solving for hc of (8) [W/m2K] 4.15 
Hc using (12) [W/m2K] 4.58 
Average  hc’s [W/m2K] 4.36 
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Aluminum Facts 

 Furthermore, an approximation of ℎ𝑐 was made using the graph of the real temperature distribution and 

the theoretical form of the distribution in a fin like the one in the experiment. With the help of an electronic 

spreadsheet, the squared differences between the theoretical result and the real distribution were calculated, then 

the objective was to minimize the squared differences from the modification of ℎ𝑐, which gave a result that was 

also very close to the others. convective coefficients. 

 

Copper = 4.44 W/m2K 

Aluminum = 4.28 W/m2K 

 

By making a numerical average between the convective coefficients, the value was obtained that was 

used both in the theoretical calculation and in the simulation by Ansys as data. 

 

Simulation by Ansys 

 In the simulation by Ansys, data was obtained that is represented in the General Results section and the 

graph delivered by Ansys when giving a Nodal solution on the graph is shown here. 

 

 
Figure 2: Nodal solution 

 

IV. General Results 
The following table and graph summarize the results of the calculations made for Aluminum 

 

Table Num. 1: Calculations made for Aluminum. 

Length (m) Temp real (ºC) 
Temp theory 

(ºC) 

Ansys 

Temperature 
(ºC) 

Deviation % 

Ansys theory 

Deviation % 

Ansysr-real 

Deviation % 

theory-real % 

0 112 112.000 112 0.00 0.00 0.00 

0.16 93 90.732 91.463 0.81 1.65 2.44 

0.191 89 87.358 87.107 0.29 2.13 1.85 

0.237 84 82.744 82.156 0.71 2.20 1.49 

0.309 78 76.400 75.275 1.47 3.49 2.05 

0.395 71 70.092 68.291 2.57 3.82 1.28 

0.485 66 64.817 63.163 2.55 4.30 1.79 

0.578 61 60.644 58.92 2.84 3.41 0.58 

0.676 56 57.524 56.078 2.51 0.14 2.72 

0.777 54 55.579 54.576 1.80 1.07 2.92 

0.888 52 54.853 54.378 0.87 4.57 5.49 

   Average 1.49 2.43 2.06 
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Figure 3: Graphic comparison of methods for aluminum fin 

 

The following table and graph summarize the results of the calculations made for Copper 

 

Table Num. 1: Calculations made for Copper. 

Length (m) Temp real (ºC) 
Temp theory 

(ºC) 

Ansys 

Temperature 
(ºC) 

Deviation % 

Ansys theory 

Deviation % 

Ansysr-real 

Deviation % 

theory-real % 

0 112 112.000 112 0.00 0.00 0.00 

0.16 94 89.586 89.998 0.46 4.45 4.93 

0.19 91 86.162 86.567 0.47 5.12 5.61 

0.238 88 81.131 81.319 0.23 8.22 8.47 

0.31 82 74.536 74.059 0.64 10.72 10.01 

0.395 75 68.074 67.347 1.08 11.36 10.17 

0.485 68 62.618 62.03 0.95 9.62 8.60 

0.578 56 58.313 57.688 1.08 2.93 3.97 

0.678 51 55.046 54.333 1.31 6.13 7.35 

0.78 48 53.049 52.428 1.18 8.45 9.52 

0.89 45 52.323 51.934 0.75 13.35 14.00 

   Average 0.74 7.30 7.51 

 

 
Figure 3: Graphic comparison of methods for Copper fin. 
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 Note: For the graphs all the data from the nodes provided by Ansys were used, but for the tables only the 

temperatures corresponding to those distances are shown. 

 

V. Conclusion 
The empirical relationships used in this article to determine convective coefficients are very close to each 

other and are verified from the experimental results, since using these convective coefficients in simulation and 

theory, curves are graphed very close to each other. 

The methods used yield results with errors no greater than 2% compared to the theoretical methods and 

no greater than 7% with respect to the experimental ones. 

The largest errors recorded in the bars (between the experimental with Ansys or theory) were due to the 

fact that the screw that held the wooden plug (insulated end) to the fin was transferring heat to the outside. This 

is observed because the slope of the graph in the last points of the graph do not have a value of zero (as the theory 

would predict due to the insulation) and since the cross section in the copper was smaller than in the aluminum, 

this negative slope is accentuated even more since in proportion it affects the copper more (better conductor) than 

aluminum. 

Experimental and theoretical methods applied to real phenomena that can be very complicated or 

expensive, these can be replaced by computer simulation methods, Ansys, a software for analysis on PC, is a good 

option.   In this software you do not have to have advanced knowledge of the subject to carry out a simulation, 

only the boundary conditions are enough (in the case of heat transfer phenomena).   The simulation is a fast and 

efficient calculation and can be repeated for different models or conditions. 
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