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Abstract: Breast cancer is the most common cancer among women and majority of diagnosed cancers are 

estrogen receptor (ER)-positive. Estrogen facilitates its effects by binding to its receptors, estrogen receptor 

(ER)-α and ER-β. In a search to identify novel ERα inhibitors, a multivariate regression analysis was carried 

out on a set of 80 compounds known to inhibit ERα in vitro belonging to benzofurans, diphenyl amine analogs, 

sulfoximine-based acyclic triaryl olefins, isoxazole, thiazolidinone derivatives, tamoxifen mimics, pyrazolo(1,5-

a)pyrimidines and chromen-2-one derivatives, respectively, and all molecules are known to inhibit the estrogen 

receptor in MCF-7 cancer cell lines. Nearly three new QSAR models were built by dividing the complete data 

set into 63 molecule training set and a 6 molecule validation set, after excluding outlying data based on Relative 

Error and Standardized Residuals. Predictive ability of new models (7, 4 and 6 variables) were evaluated and 

observed that all statistical values are within limits. R
2
cvext was found to be 0.99 for all the three model 

equations. Therefore, to define the statistical quality of activity prediction, FIT Kubinyi function was used, 

where the 7-variable model was chosen as best model as it possessed high FIT value than others. This model 

displayed good internal predictivity with q
2
 value of 0.99 and was able to explain 91 % variance of inhibitory 

activities. The model was further validated by applying the y-randomization test and the low R
2
 and Q

2
 values 

indicated that the results obtained in the QSAR model are not due to chance correlation. The model indicated 

an increase in HOMO, H-bond acceptors, donors and LogP with reduction in LUMO and lipophilic character 

would enhance ERα inhibition. 
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I. Introduction 
Breast cancer is the most common cancer among women in all parts of the world

1
. Majority of breast 

cancers diagnosed today are estrogen receptor (ER)-positive. However, in certain cases, progesterone receptor-

positive (PR-positive) is also responsible for breast cancer. Hence, during hormone therapy, it is more important 

to diagnose the received signal from Estrogen receptor (ER) or progesterone receptor (PR)
2
. When circulating 

estrogen binds ER, it stimulates cell division and tumor growth 
3
. Tumors that are ER/PR-positive are much 

more likely to respond to hormone therapy than tumors that are ER/PR-negative
4
. Breast cancer starts when 

cells in the breast begin to grow out of control. These cells usually form a tumor that can often be seen on an x-

ray or felt as a lump. The tumor is malignant (cancer) if the cells can grow into (invade) surrounding tissues or 

spread (metastasize) to distant areas of the body
5
. Estrogen, a sex steroid hormone is produced by the ovaries 

and affects growth, differentiation, and function of the mammary gland. Estrogen facilitates its effects by 

binding to its receptors, estrogen receptor (ER)-α and ER-β 
6
. In premenopausal women, estrogen production is 

high in ovaries. In these women, surgical, radiation, and pharmacologic ablation of the ovaries can be employed 

to decrease estrogen production. In postmenopausal women, relatively small amounts of estrogensare produced 

in peripheral tissues by conversion of androgens produced by the adrenal glands. These low levels of estrogens 

can be inhibited either by blocking the estrogen receptor, or by inhibiting the peripheral conversion of androgens 

to estrogens 
7
. Among the pharmacologic endocrine therapies for breast cancer are treatment with antiestrogens 

(including selective estrogen receptor modulator (SERMs)), luteinizing hormone-releasing hormone (LHRH) 

analogs, aromatase inhibitors, estrogens, progestins, and androgens. Since years, several scaffolds have been 

developed as potential agents against breast cancer. Tamoxifen is the most extensively used and studied 

antiestrogen and its role in the management of patients with breast cancer is well established. However, 

extensive evaluation of tamoxifen treatment revealed significant side effects such as endometrial cancer, blood 

clots and the development of acquired resistance.Hence, there is a pressing need for the improvement and/or 

development of new antiestrogens for the prevention and treatment of breast cancer. Herein, we report the 
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computer-aided QSAR (Quantitative Structure Activity Relationship) analysis on a diverse set of ERα inhibitors 

to extract the important characteristic features of ligands responsible for bioactivity against ERα. 

 
II. Materials and Methods 

Dataset 

ERα antagonists directly block the active site of ERα to prevent any estrogen from binding to it as well 

as to stop the function of hormone. In breast cancer cell, estrogen activates ERα by binding to its active site, 

which induces conformational changes that allow co-activators to attach on the complex. Several ligands have 

been put forward by many researchers as antagonists of ERα such as benzofurans
8
, diphenyl amine analogs

9
, 

sulfoximine-based acyclic triaryl olefins
10

, isoxazole derivatives
11

, thiazolidinone derivatives
12

, tamoxifen 

mimics
13

, pyrazolo(1,5-a)pyrimidine conjugates 
14

, chromen-2-one derivatives 
15

 etc. Many of those compounds 

are serving as anticancer agents 
16

, antifungal agents 
17

, and antiinflammatory agents etc. 
18

  

 

Molecular Descriptors 

In our study, forty various physico-chemical, topological and electrostatic descriptors were evaluated in 

terms of their efficacy to predict the activities of the investigated inhibitors. Molecular descriptors chosen in the 

study: topological, shape and connectivity indices, total dipole and lipole, molecular weight, h-bond donors, h-

bond acceptors, logP and rotatable bond counts. A semi-empirical molecular orbital package was used to 

calculate thermodynamic property like heat of formation and electrostatic properties like HOMO (Highest 

Occupied Molecular Orbital), LUMO (Lowest Unoccupied Molecular Orbital) components. 

 
Multivariate Regression Analysis 

QSAR models were constructed on complete and training sets, respectively. Validation was done 

internally using leave-one-out (LOO) technique and externally by predicting the activities of validation set. The 

relationship between dependent variable (log1/IC50) and independent variables was established by linear 

multiple regression analysis. Significant descriptors were chosen based on the statistical data of analysis. The 

generated QSAR equation was judged based on the parameters like correlation coefficient (r), standard error of 

estimate (s), F-value, cross-validation r
2
 (q

2
). 

 

Predictive Ability of QSAR model 

Predictive ability of the generated model was estimated externally by predicting the activities of 

validation set. This criterion may not be sufficient for a QSAR model to be truly predictive 
19

. An additional 

condition for high predictive ability of QSAR model is based on external set cross-validation r
2
, (R

2
cv,ext) and the 

regression of observed activities against predicted activities and vice versa for validation set, if the following 

conditions are satisfied 
20

 

 

   R
2

cv,ext>   0.5    (1) 

   R
2
 >   0.6    (2) 

         (R
2
 – R0

2
) / R

2 
< 0.1 or  (R

2
 – R0’

2
) / R

2 
< 0.1  (3) 

  0.85 ≤ k ≤ 1.15 or 0.85 ≤ k’ ≤ 1.15   (4)  

 
Calculations relating to R

2
cv,ext, R0

2
 and the slopes, k and k’ are based on regression of observed values against 

predicted values and vice versa. 

 
Y-randomization 

This test confirms the sturdiness of a QSAR model 
21

 and to evaluate the multiple linear regression 

models obtained by variables. In y-randomization test, the dependent variable is shuffled randomly and a new 

model is builtwith X-data intact. The new models are expected to have low R2 and Q2 values, which determine 

the statistical significance of the original model. 

 

III. Results and Discussion 
A multivariate regression analysis was carried out on a set of 80 compounds which are known to inhibit 

ERα in vitro as all molecules are known to inhibit the estrogen receptor in MCF-7 cancer cell lines with better 

inhibitory concentrations. A multiple linear regression analysis has been initiated on these compounds to 

delineate the important features of these set of compounds. The biological activity of few molecules was 

reported as IC50 (M) while few others as Relative Binding Affinity (RBA %) against ERα in MCF-7 cancer 

cell lines. Therefore, the RBA activity data was converted to corresponding IC50 values.  

 



In Silico Structure Activity Relationship Analysis on a Set Of ERΑ Inhibitors 

 

DOI: 10.9790/3008-1406015568                                www.iosrjournals.org                                             57 | Page 

The 80 molecule dataset was subjected to QSAR analysis to identify the influential parameters responsible for 

biological activity. The activity data of is given in Table 1. 

 

Table 1: Biological activity data of 80 compounds dataset (IC50 (M)). 
S. 

N

o. 

Molecule 

No. 

Simplified molecular-input line-entry system 

(SMILES) 

Experimental 

Activity (IC50M) 

1/IC5

0 

log 

(1/IC50

) 

1 
11_6a.m
ol 

Fc1ccc(cc1)C1=CC(=Nc2cc(nn21)c1ccccc1)C(=O)N1CCN(CC
1)C(=O)c1cccnc1Nc1ccccc1 

1.79 
0.558

659 
-

0.25285 

2 
11_6b.m

ol 

Clc1ccc(cc1Cl)C1=CC(=Nc2cc(nn21)c1ccccc1)C(=O)N1CCN(

CC1)C(=O)c1cccnc1Nc1ccccc1 
5.3 

0.188

679 

-

0.72428 

3 
11_6c.m
ol 

COc1ccc(cc1)C1=CC(=Nc2cc(nn21)c1ccccc1)C(=O)N1CCN(C
C1)C(=O)c1cccnc1Nc1ccccc1 

2.16 
0.462

963 
-

0.33445 

4 
11_6d.m

ol 

COc1ccc(cc1OC)C1=CC(=Nc2cc(nn21)c1ccccc1)C(=O)N1CC

N(CC1)C(=O)c1cccnc1Nc1ccccc1 
6.12 

0.163

399 

-

0.78675 

5 
11_6e.m
ol 

COc1cc(cc(c1OC)OC)C1=CC(=Nc2cc(nn21)c1ccccc1)C(=O)N
1CCN(CC1)C(=O)c1cccnc1Nc1ccccc1 

6.93 
0.144

3 
-

0.84073 

6 
11_6f.mo

l 

Fc1ccc(cc1)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1=Nc2cc(n

n2C(=C1)c1ccc(cc1)F)c1ccccc1 
3.34 

0.299

401 

-

0.52375 

7 
11_6g.m
ol 

Fc1ccc(cc1)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1=Nc2cc(n
n2C(=C1)c1ccc(c(c1)Cl)Cl)c1ccccc1 

4.73 
0.211

416 
-

0.67486 

8 
11_6h.m

ol 

COc1ccc(cc1)C1=CC(=Nc2cc(nn21)c1ccccc1)C(=O)N1CCN(C

C1)C(=O)c1cccnc1Nc1ccc(cc1)F 
4.97 

0.201

207 

-

0.69636 

9 
11_6i.mo
l 

COc1ccc(cc1OC)C1=CC(=Nc2cc(nn21)c1ccccc1)C(=O)N1CC
N(CC1)C(=O)c1cccnc1Nc1ccc(cc1)F 

7.02 
0.142

45 
-

0.84634 

10 
11_6j.mo

l 

COc1cc(cc(c1OC)OC)C1=CC(=Nc2cc(nn21)c1ccccc1)C(=O)N

1CCN(CC1)C(=O)c1cccnc1Nc1ccc(cc1)F 
6.28 

0.159

236 

-

0.79796 

11 
11_6k.m
ol 

COc1ccc(cc1)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1=Nc2cc(
nn2C(=C1)c1ccc(cc1)F)c1ccccc1 

8.08 
0.123

762 
-

0.90741 

12 
11_6l.mo

l 

COc1ccc(cc1)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1=Nc2cc(

nn2C(=C1)c1ccc(c(c1)Cl)Cl)c1ccccc1 
6.12 

0.163

399 

-

0.78675 

13 
11_6m.m
ol 

COc1ccc(cc1)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1=Nc2cc(
nn2C(=C1)c1ccc(cc1)OC)c1ccccc1 

2.93 
0.341

297 
-

0.46687 

14 
11_6n.m

ol 

COc1ccc(cc1)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1=Nc2cc(

nn2C(=C1)c1ccc(c(c1)OC)OC)c1ccccc1 
2.85 

0.350

877 

-

0.45484 

15 
11_6o.m

ol 

COc1ccc(cc1)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1=Nc2cc(

nn2C(=C1)c1cc(c(c(c1)OC)OC)OC)c1ccccc1 
3.02 

0.331

126 

-

0.48001 

16 
11_6p.m

ol 

COc1ccc(cc1OC)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1=Nc

2cc(nn2C(=C1)c1ccc(cc1)F)c1ccccc1 
2.69 

0.371

747 

-

0.42975 

17 
11_6q.m

ol 

COc1ccc(cc1OC)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1=Nc

2cc(nn2C(=C1)c1ccc(c(c1)Cl)Cl)c1ccccc1 
5.95 

0.168

067 

-

0.77452 

18 
11_6r.mo

l 

COc1ccc(cc1)C1=CC(=Nc2cc(nn21)c1ccccc1)C(=O)N1CCN(C

C1)C(=O)c1cccnc1Nc1ccc(c(c1)OC)OC 
2.53 

0.395

257 

-

0.40312 

19 
11_6s.m

ol 

COc1ccc(cc1OC)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1=Nc

2cc(nn2C(=C1)c1ccc(c(c1)OC)OC)c1ccccc1 
2.61 

0.383

142 

-

0.41664 

20 
11_6t.mo

l 

COc1ccc(cc1OC)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1=Nc

2cc(nn2C(=C1)c1cc(c(c(c1)OC)OC)OC)c1ccccc1 
4.24 

0.235

849 

-

0.62737 

21 
11_6u.m

ol 

COc1cc(cc(c1OC)OC)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1

=Nc2cc(nn2C(=C1)c1ccc(cc1)F)c1ccccc1 
7.59 

0.131

752 

-

0.88024 

22 
11_6v.m

ol 

COc1cc(cc(c1OC)OC)Nc1ncccc1C(=O)N1CCN(CC1)C(=O)C1

=Nc2cc(nn2C(=C1)c1ccc(c(c1)Cl)Cl)c1ccccc1 
5.38 

0.185

874 

-

0.73078 

23 
11_6w.m

ol 

COc1ccc(cc1)C1=CC(=Nc2cc(nn21)c1ccccc1)C(=O)N1CCN(C

C1)C(=O)c1cccnc1Nc1cc(c(c(c1)OC)OC)OC 
3.83 

0.261

097 -0.5832 

24 
11_6x.m

ol 

COc1ccc(cc1OC)C1=CC(=Nc2cc(nn21)c1ccccc1)C(=O)N1CC

N(CC1)C(=O)c1cccnc1Nc1cc(c(c(c1)OC)OC)OC 
7.34 

0.136

24 -0.8657 

25 6_10.mol 
Oc1ccc(cc1)N1(C@@H)(SCC1=O)c1ccc(cc1)Cl 

5 
0.2 

-

0.69897 

26 6_12.mol 
Cc1ccc(cc1)N1(C@@H)(SCC1=O)c1ccc(cc1)Cl 

0.81 
1.234

568 

0.09151

5 

27 6_13.mol O=C1CS(C@H)(N1c1ccccc1)c1ccccc1 0.25 4 0.60206 

28 6_14.mol 
Cc1ccc(cc1)N1(C@@H)(SCC1=O)c1cccc2ccccc21 

0.23 
4.347

826 

0.63827

2 

29 6_9.mol 
COc1ccc(cc1OC)(C@@H)1SCC(=O)N1c1ccc(cc1)O 

 
2.58 

0.387
597 

-
0.41162 

30 
8_11a.m

ol 

O=C1OC2(C=CC(=O)C=C2)C(=C1c1sc2ccccc2c1)c1ccccc1 
5.9 

0.169

492 

-

0.77085 

31 
8_11b.m
ol 

Fc1ccc(cc1)C1=C(c2ccccc2)C2(OC1=O)C=CC(=O)C=C2 
6.32 

0.158
228 

-
0.80072 

32 
8_11c.m

ol 

O=C1OC2(C=CC(=O)C=C2)C(=C1c1oc2ccccc2c1)c1ccccc1 
5.8 

0.172

414 

-

0.76343 

33 8_11d.m Oc1ccc(cc1)C1=C(c2ccccc2)C2(OC1=O)C=CC(=O)C=C2 6 0.166 -
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ol 667 0.77815 

34 
8_11e.m

ol 

(O-
)(N+)(=O)c1ccc(cc1)C1=C(c2ccccc2)C2(OC1=O)C=CC(=O)C

=C2 

5.99 0.166

945 

-

0.77743 

35 
8_11f.mo

l 

COc1ccc(cc1)C1=C(c2ccccc2)C2(OC1=O)C=CC(=O)C=C2 
5.86 

0.170

648 -0.7679 

36 
8_11g.m

ol 

OCc1ccc(cc1)C1=C(c2ccccc2)C2(OC1=O)C=CC(=O)C=C2 
5.76 

0.173

611 

-

0.76042 

37 
8_11h.m

ol 

COc1cc(cc(c1OC)OC)C1=C(c2ccccc2)C2(OC1=O)C=CC(=O)

C=C2 
5.79 

0.172

712 

-

0.76268 

38 
8_11i.mo

l 

COc1ccc(cc1C1=C(c2ccccc2)C2(OC1=O)C=CC(=O)C=C2)F 
5.73 

0.174

52 

-

0.75815 

39 
8_11j.mo

l 

COc1c(cc(cc1C1=C(c2ccccc2)C2(OC1=O)C=CC(=O)C=C2)C)

Br 
5.85 

0.170

94 

-

0.76716 

40 
8_11k.m

ol 

O=C1C=CC2(OC(=O)C(=C2c2ccccc2)c2ccc3c(c2)OCO3)C=C

1 
5.81 

0.172

117 

-

0.76418 

41 
8_11l.mo

l 

O=C1C=CC2(OC(=O)C(=C2c2ccccc2)c2ccc(cc2)C#N)C=C1 
19 

0.052

632 

-

1.27875 

42 
8_11m.m

ol 

OC(=O)c1ccc(cc1)C1=C(c2ccccc2)C2(OC1=O)C=CC(=O)C=C

2 
5.95 

0.168

067 

-

0.77452 

43 
8_11n.m
ol 

O=Cc1sc(cc1)C1=C(c2ccccc2)C2(OC1=O)C=CC(=O)C=C2 
6.23 

0.160
514 

-
0.79449 

44 1_4d.mol 
Oc1ccc(cc1)N(CC1CC1)c1ccc(cc1)O 

 
7.41 

0.135 

-

0.86967 

45 1_4e.mol 
CC(C)CCN(c1ccc(cc1)O)c1ccc(cc1)O 

3.10 
0.322

5 
-

0.49147 

46 1_4g.mol Oc1ccc(cc1)N(CC1CCCCC1)c1ccc(cc1)O 0.45 2.225 0.34733 

47 1_4h.mol 
Oc1ccc(cc1)N(CCC1CCCCC1)c1ccc(cc1)O 

0.11 
9.107

5 

0.95939

9 

48 1_4i.mol 
Oc1ccc(cc1)N(C(C@@)12C(C@@H)3C(C@@H)(C(C@@)(B
r)(C3)C1)C2)c1ccc(cc1)O 

0.73 
1.377

5 
0.13909

2 

49 1_4j.mol 
Oc1ccc(cc1)N(Cc1ccccc1)c1ccc(cc1)O 

0.61 
1.637

5 

0.21418

1 

50 1_4k.mol Oc1ccc(cc1)CN(c1ccc(cc1)O)c1ccc(cc1)O 0.09 10.65 1.02735 

51 1_4l.mol 
Oc1ccc(cc1)N(CC1CCCCC1)c1ccc(cc1)O 

0.35 
2.825 

0.45101

8 

52 
1_4m.mo

l 

Oc1ccc(cc1)N(c1ccccc1)c1ccc(cc1)O 
0.31 

3.237

5 0.51021 

53 
14_15a.

mol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN(C)C)c2ccccc2OC1=O 
1.14 

0.875 

-

0.05799 

54 
14_15b.

mol 

CCN(CC)CCOc1ccc(cc1)NC1=C(C(=O)Oc2ccccc21)c1ccc(cc1

)OC 
2.35 

0.425 

-

0.37161 

55 
14_15c.

mol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN2CCCC2)c2ccccc2OC1

=O 
1.05 

0.95 

-

0.02228 

56 
14_15d.

mol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN2CCCCC2)c2ccccc2O

C1=O 
0.77 

1.3 

0.11394

3 

57 
14_15f.m

ol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN2CCOCC2)c2ccccc2O

C1=O 
4.60 

0.217

5 

-

0.66254 

58 
14_16a.

mol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN(C)C)c2ccc(cc2OC1=O

)OC 
0.56 

1.8 

0.25527

3 

59 
14_16b.

mol 

CCN(CC)CCOc1ccc(cc1)NC1=C(C(=O)Oc2cc(ccc21)OC)c1cc

c(cc1)OC 
0.87 

1.15 

0.06069

8 

60 
14_16c.
mol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN2CCCC2)c2ccc(cc2OC
1=O)OC 

0.91 
1.1 

0.04139
3 

61 
14_16d.

mol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN2CCCCC2)c2ccc(cc2O

C1=O)OC 
0.53 

1.875 

0.27300

1 

62 
14_16f.m

ol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN2CCN(C)CC2)c2ccc(cc
2OC1=O)OC 

 

3.33 

0.3 

-

0.52288 

63 
14_18a.

mol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN(C)C)c2ccc(cc2OC1=O

)O 
0.20 

5.05 

0.70329

1 

64 
14_18b.

mol 

CCN(CC)CCOc1ccc(cc1)NC1=C(C(=O)Oc2cc(ccc21)O)c1ccc(

cc1)OC 
0.22 

4.65 

0.66745

3 

65 
14_18c.

mol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN2CCCC2)c2ccc(cc2OC

1=O)O 
0.23 

4.3 

0.63346

8 

66 
14_18d.

mol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN2CCCCC2)c2ccc(cc2O

C1=O)O 
0.14 

7.075 

0.84972

6 

67 
14_18e.

mol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN2CCOCC2)c2ccc(cc2O

C1=O)O 
7.55 

0.132

5 

-

0.87778 

68 
14_18f.m

ol 

COc1ccc(cc1)C1=C(Nc2ccc(cc2)OCCN2CCN(C)CC2)c2ccc(cc

2OC1=O)O 
0.83 

1.2 

0.07918

1 

69 4_4a.mol Oc1ccc(cc1)c1onc(c1/C=C/c1ccccc1)c1ccc(cc1)O 0.11 8.75 0.94200
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8 

70 4_4c.mol 
Cc1ccc(cc1)\C=C\c1c(onc1c1ccc(cc1)O)c1ccc(cc1)O 

0.67 
1.5 

0.17609
1 

71 4_4d.mol 
Oc1ccc(cc1)c1onc(c1/C=C/c1ccc(cc1)F)c1ccc(cc1)O 

0.13 
7.75 

0.88930

2 

72 4_4e.mol Oc1ccc(cc1)c1onc(c1/C=C/c1ccc(cc1)Cl)c1ccc(cc1)O 0.50 2 0.30103 

73 4_4f.mol 
Oc1ccc(cc1)c1onc(c1/C=C/c1ccc(cc1)C(F)(F)F)c1ccc(cc1)O 

0.08 
13.25 

1.12221
6 

74 4_4g.mol 
Oc1ccc(cc1)c1onc(c1/C=C/c1cccc(c1)C(F)(F)F)c1ccc(cc1)O 

0.27 
3.75 

0.57403

1 

75 4_4h.mol 
Oc1ccc(cc1)\C=C\c1c(onc1c1ccc(cc1)O)c1ccc(cc1)O 

0.02 
41 

1.61278
4 

76 4_4i.mol 
Oc1ccc(cc1)c1onc(c1/C=C/c1cccc(c1)O)c1ccc(cc1)O 

0.05 
21.75 

1.33745

9 

77 4_4j.mol 
CCCCCCC\C=C\c1c(onc1c1ccc(cc1)O)c1ccc(cc1)O 

0.22 
4.5 

0.65321
3 

78 4_4k.mol CCCCCCCC\C=C\c1c(onc1c1ccc(cc1)O)c1ccc(cc1)O 0.16 6.25 0.79588 

79 4_4l.mol 
CCCCCCCCC\C=C\c1c(onc1c1ccc(cc1)O)c1ccc(cc1)O 

0.31 
3.25 

0.51188

3 

80 
4_4m.mo

l 

CC(C)(C)\C=C\c1c(onc1c1ccc(cc1)O)c1ccc(cc1)O 
0.09 

10.75 

1.03140

8 

 
Dataset (80 compounds - IC50 (M) activity) 

The inhibitory activities of dataset reported in terms of IC50 in μM transformed into their respective 

logarithmic values in order to overcome overlapping data. Therefore, to assure linear distribution of data, the 

enzyme inhibition data converted to negative logarithmic values and then subjected to QSAR analysis. 

 

The equation 1 given below represents the linear QSAR model from a set of 80 ERα inhibitors. 

Complete Data set: 

 
log(1/IC50) = + 0.071831*Total Dipole  

   - 0.033945*Total Lipole 

   - 4.4167678e-005*Weiner Index  

   + 0.3128*H-bond Donors 

   + 0.18529*LogP 

   - 1.1803      (Eq 1) 

 

r =0.818, r
2
 = 0.669, q

2
 =0.540, F = 29.961, n = 80, s = 0.406   

 
From the above equation, it is evidenced that the parameters of r, r2 values are within limits and the 

properties that appeared in the equation included total dipole and lipole on the molecules where a reduced lipole 

and increase in dipole characteristics would favour better values or in other words ERα inhibitory features of 

ligands. Similarly, decrease in Weiner index with an increase in H-bond donors and logP on ligands favour ERα 

inhibition. 

 

 
Figure 1: Actual Vs Predicted values of complete set comprising 80 ERα inhibitors. 
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A plot showing observed values versus predicted values is given in Figure 1 where it was observed that 

few data points are away from the regression line. Such points refer to noise and are represented as outlying 

data. Hence, outlier detection was carried out by two methods. 

 

Outlier Detection 

The criterion for removing outliers is based on Relative Error calculation and Standardized Residuals. 

 
Relative Error Calculation 

This method was employed to calculate the relative error (Eq. 2) of all compounds in the data set. Ten 

compounds with high relative error (more than 100 relative error %) are highlighted and the data represented 

were 1, 2, 5, 11, 13, 24, 25, 26, 68 and 71 respectively (Table 2). Moreover, it should be noted that the QSAR 

model was good, however, the model prediction led to a high relative error for compounds and hence they 

should be excluded from the study as they influence the outcome in a significant manner. 

 
Relative Error = Residual Value / Actual Value   (Eq 2) 

 
Table 2. Outlier calculation on complete data set. Compounds 1, 2, 5, 11, 13, 24, 25, 26, 68 and 71 regarded as 

outliers based on relative error %. Standardized residual data reported 1, 2, 24, 25, 26 and 76 compounds. 

S. No. 
Actual Value 

Predicted 

Value 

Residual 

Value 

Standardized 

residuals relative error error % 

1 -0.86967 0.208898 -1.07856 -2.74214 1.2402 124.02 

2 -0.49147 0.332473 -0.82394 -2.0948 1.676489 167.6489 

3 0.34733 0.355744 -0.00841 -0.02139 -0.02423 -2.42253 

4 0.959399 0.408035 0.551364 1.401793 0.574697 57.46973 

5 0.139092 0.361172 -0.22208 -0.56462 -1.59665 -159.665 

6 0.214181 0.364884 -0.1507 -0.38315 -0.70362 -70.362 

7 1.02735 0.75344 0.27391 0.696391 0.266618 26.6618 

8 0.451018 0.368172 0.082847 0.21063 0.183688 18.36882 

9 0.51021 0.408451 0.101758 0.258711 0.199443 19.94434 

10 0.889302 0.651965 0.237337 0.603408 0.26688 26.68801 

11 0.30103 0.666116 -0.36509 -0.9282 -1.21279 -121.279 

12 0.942008 0.700609 0.241399 0.613735 0.25626 25.626 

13 0.176091 0.822442 -0.64635 -1.64329 -3.67055 -367.055 

14 1.12222 0.473535 0.648681 1.649213 0.578034 57.80337 

15 0.574031 0.612531 -0.0385 -0.09788 -0.06707 -6.70697 

16 1.61278 0.940882 0.671902 1.70825 0.416611 41.66111 

17 1.33746 1.05765 0.279811 0.711394 0.209211 20.92107 

18 0.653212 0.716121 -0.06291 -0.15994 -0.09631 -9.63063 

19 0.79588 0.738725 0.057155 0.14531 0.071813 7.181309 

20 0.511883 0.765816 -0.25393 -0.6456 -0.49608 -49.6076 

21 1.03141 0.669747 0.361661 0.91949 0.350647 35.06472 

22 -0.41162 -0.29189 -0.11973 -0.3044 0.290875 29.08751 

23 -0.69897 -0.38265 -0.31632 -0.80422 0.452553 45.2553 

24 0.091515 -0.6541 0.745616 1.895661 8.147473 814.7473 

25 0.60206 -0.45422 1.05628 2.685496 1.754443 175.4443 

26 0.638272 -0.69108 1.32936 3.379778 2.082748 208.2748 

27 -0.77815 -0.31369 -0.46446 -1.18085 0.596876 59.68764 

28 -0.77743 -0.72067 -0.05675 -0.14429 0.073001 7.300119 

29 -0.77085 -0.72305 -0.0478 -0.12154 0.062014 6.20145 

30 -0.80072 -0.73389 -0.06683 -0.1699 0.083459 8.345932 

31 -0.76343 -0.79368 0.030256 0.076922 -0.03963 -3.96314 

32 -0.7679 -0.54645 -0.22145 -0.56302 0.288386 28.8386 

33 -0.76042 -0.24966 -0.51076 -1.29856 0.671681 67.1681 

34 -0.76268 -0.87597 0.113294 0.28804 -0.14855 -14.8547 

35 -0.75816 -0.75497 -0.00318 -0.00809 0.004196 0.419559 

36 -0.76716 -0.42186 -0.34529 -0.87787 0.450092 45.00923 

37 -0.76418 -0.73961 -0.02457 -0.06246 0.032148 3.214822 

38 -1.27875 -0.79016 -0.4886 -1.24221 0.38209 38.20895 

39 -0.77452 -0.42623 -0.34829 -0.8855 0.449687 44.96867 

40 -0.79449 -0.81449 0.020002 0.050854 -0.02518 -2.51761 

41 -0.78675 -0.56272 -0.22403 -0.56958 0.284757 28.47572 

42 -0.84073 -0.76978 -0.07095 -0.18038 0.08439 8.439029 

43 -0.25285 -0.32353 0.070677 0.179689 -0.27952 -27.9517 

44 -0.72428 -0.23868 -0.48559 -1.23458 0.670454 67.04544 

45 -0.33445 -0.24165 -0.0928 -0.23593 0.277466 27.74663 

46 -0.52375 -0.19619 -0.32756 -0.83278 0.62541 62.541 
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47 -0.67486 -0.10245 -0.57241 -1.4553 0.848188 84.8188 

48 -0.69636 -0.15781 -0.53855 -1.36922 0.773386 77.3386 

49 -0.84634 -0.50084 -0.3455 -0.87841 0.408232 40.82322 

50 -0.79796 -0.7138 -0.08416 -0.21398 0.105474 10.54736 

51 -0.90741 -0.60487 -0.30254 -0.76918 0.333411 33.34112 

52 -0.78675 -0.60529 -0.18147 -0.46136 0.230652 23.06524 

53 -0.46687 -0.44579 -0.02108 -0.05359 0.045144 4.514445 

54 -0.45485 -0.67813 0.223281 0.567672 -0.49089 -49.0895 

55 -0.48001 -0.7916 0.311594 0.7922 -0.64914 -64.9145 

56 -0.42975 -0.82431 0.39456 1.003133 -0.91811 -91.8111 

57 -0.77452 -0.86483 0.090314 0.229615 -0.11661 -11.6607 

58 -0.40312 -0.62382 0.220704 0.56112 -0.54749 -54.7488 

59 -0.41664 -0.75031 0.333674 0.848336 -0.80087 -80.0867 

60 -0.62737 -0.89435 0.26698 0.678773 -0.42556 -42.5557 

61 -0.88024 -0.95381 0.073568 0.187039 -0.08358 -8.35766 

62 -0.73078 -0.96475 0.23397 0.594848 -0.32016 -32.0164 

63 -0.5832 -0.73342 0.150219 0.381918 -0.25758 -25.7578 

64 -0.8657 -0.83031 -0.03538 -0.08996 0.040874 4.08737 

65 0.113943 0.02225 0.091693 0.233122 0.804729 80.47287 

66 -0.05799 -0.21436 0.156371 0.397559 -2.69643 -269.643 

67 -0.37161 -0.028 -0.34361 -0.87359 0.924639 92.46389 

68 -0.02228 -0.0775 0.055225 0.140404 -2.47906 -247.906 

69 -0.66254 -0.39231 -0.27024 -0.68705 0.407878 40.78782 

70 0.273001 0.135151 0.13785 0.350471 0.504943 50.49432 

71 0.255273 -0.01813 0.273407 0.695113 1.071038 107.1038 

72 0.060698 0.117054 -0.05636 -0.14328 -0.92848 -92.8477 

73 0.041393 0.041643 -0.00025 -0.00064 -0.00604 -0.60419 

74 -0.52288 -0.29579 -0.22709 -0.57736 0.434309 43.43089 

75 0.849726 0.440946 0.40878 1.039286 0.481073 48.10727 

76 -0.87778 -0.15149 -0.7263 -1.84655 0.827422 82.74222 

77 0.703291 0.193346 0.509945 1.296489 0.725084 72.50839 

78 0.667453 0.230621 0.436832 1.110606 0.654476 65.4476 

79 0.633468 0.35461 0.278858 0.708971 0.440209 44.02085 

80 0.079181 0.029929 0.049252 0.125219 0.622018 62.20176 

 

       

 

stdev 0.393328 

    

 
Standardized Residuals 

The data set was analyzed for the presence of outliers, by calculating the standard residuals. 

Standardized residuals greater than 2 and less than -2 are usually considered large. Outliers should be removed 

in order to obtain the best statistical result. 

From table 1, Compounds 1, 2, 24, 25, 26 and 76 have high standardized residuals and are safely removed from 

the dataset.  

 
A new QSAR model was built (Eq 3) with n=69, after excluding eleven outlying data (1, 2, 5, 11, 13, 24, 25, 26, 

68, 71 and 76) (based on relative error % and standardized residuals) and the graph plotted based on actual 

versus predicted values of complete set is given in Figure 2, where better predictive nature was displayed when 

compared with Eq 3 data, given in Figure 1. 

 
Complete Data set after removing Outliers: 

 
log (1/IC50) = - 0.027521*Total Lipole 

   - 0.00014816*Weiner index  

   + 0.19378*H-bond Acceptors  

   + 0.43732* H-bond Donors 

   + 0.20667*LogP 

   - 0.25956*LUMO  

   + 0.55245*HOMO  

   + 2.9308     (Eq 3) 

 

r =0.958, r
2
 = 0.918, q

2
 =0.844, F = 97.392, n = 69, s = 0.214 
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Equation 3 displays better correlation coefficient values than Eq 1, which can be attributed to the 

removal of outlying points from the data set. Further, new properties entered the regression equation such as H-

bond Acceptors, HOMO and LUMO, where, the former properties needs to be enhanced on molecules with a 

concomitant decrease in LUMO parameter in order to attain better inhibition.  

 
Figure 2: Observed and predicted values of molecules of 69 compound dataset after removing outliers. 

 
New QSAR Models 

Around three new QSAR models were attempted by dividing the 69 compound ERα inhibitor data set 

as a 63 molecule training set and a 6 molecule validation set (Table 3) based on visual inspection after rejection 

of outliers from the data set. More specifically, the selection of molecules in the training set was made according 

to the IC50 values; so that representatives of a wide range of structures with different substituents and activity 

were included. The distribution of activity values for the validation set follows the similar distribution of the 

activity values for the training set. The results obtained from the multiple linear regression procedure with 

varied number of descriptors are shown in Table 3 with their statistics.  

 

Given below are a set of 3 different models obtained and are statistically significant (Table 3). 

 

Table 3.Descriptor data and statistical values of three model equations. 
Descriptor Coefficient 

Model-1 Model-2 Model-3 

Total Dipole - - +0.03416 

Total Lipole -0.02735 -0.02198 -0.02786 

Weiner index -0.00014 -8.8e-005 -8.8e-005 
H-bond acceptors +0.19400 - +0.12182 

H-bond donors +0.43721 +0.66001 +0.56131 

LogP +0.20483 - +0.16957 
LUMO -0.24939 - - 

HOMO +0.54437 - - 

KAlpha3 index - +0.15236 - 
    

Constant +2.8706 -1.1104 -1.6867 

Statistics  

r 0.954 0.928 0.938 

r2 0.910 0.861 0.879 
q2 0.822 0.761 0.764 

F 79.47 89.68 68.41 

n 63 63 63 
s 0.22 0.27 0.25 

No. of Descriptors 7 4 6 

Equation No. 4 5 6 
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Test set data:  

Different compounds were selected as test/validation set. They are: 

 

Set-1: 38, 41, 1, 8, 14, 62 

Set-2: 23, 39, 58, 5, 7, 4 

Set-3: 12, 26, 38, 7, 62, 68 

 

Test set data for equations 4, 5 and 6 given below and the predictive ability of test sets were given in Table 4. 

 

Test set data-1 (Equation 4): 

Test set graphs were plotted for calculations (Figure 3). Values corresponding to k (actual Vs predicted) and k’ 

(predicted Vs actual) and R
2
-R0

2
/R

2
are given below. It was observed that these parameters are within the limits.  

 

Actual Vs Predicted – Test 

set-1 
Actual 

Values 

Predicted 

Values 

0.34733 0.346533 

0.942008 0.88496 

0.79588 0.780828 

-0.52375 -0.56807 

-0.84634 -0.71774 

0.060698 0.087232 
 

 

 

k = 0.9534 

 

R
2
 = 0.9942 

R0
2
 = 0.9937 

  

R
2
-R0

2
/R

2
 = 0.0005 

 

 
   

Predicted Vs Actual – Test 

set-1 

Actual 

Values 

Predicted 

Values 

0.346533 0.34733 

0.88496 0.942008 

0.780828 0.79588 

-0.56807 -0.52375 

-0.71774 -0.84634 

0.087232 0.060698 
 

 

 

k' = 1.0488 

 

R
2
 = 0.9942 

R0
2
 = 0.9938 

  

R
2
-R0’

2
/R

2
 = 0.0004 

 

  Figure 3: Graph showing validation set-1 data 

comprising 6 compounds. A.) Actual versus 

Predicted data B.) Predicted versus Actual values 

data 
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Figure 4: Regression plot showing training set (blue spheres) data and test set (triangles) of QSAR Model-1 

 

Test set data-2 (Equation 5): 

Test set data-2 graphs were plotted, given in Figures 5 and 6. Values corresponding to k (actual Vs 

predicted) and k’ (predicted Vs actual) and R
2
-R0

2
/R

2
are presented here, where it was observed that these 

parameters are within the limits.  

 

Actual Vs Predicted – Test set-

2 

Actual 

Values 

Predicted 

Values 

1.02735 1.33183 

0.451018 0.634692 

0.889302 0.607083 

-0.76343 -1.08321 

-0.67486 -0.47565 

-0.05799 -0.10878 
 

 

 

k = 0.9618 

 

R
2
 = 0.9139 

R0
2
 = 0.9138 

  

R
2
-R0

2
/R

2 
= 0.0001 

 

 
   

Predicted Vs Actual – Test set-

2 

Actual 

Values 

Predicted 

Values 

1.33183 1.02735 

0.634692 0.451018 

0.607083 0.889302 

-1.08321 -0.76343 

-0.47565 -0.67486 

-0.10878 -0.05799 
 

 

 

k' = 1.0396 

 

R
2
 = 0.9139 

R0
2
 = 0.9132 

  

R
2
-R0’

2
/R

2
 = 

0.0007 

 
  Figure 5: Graph showing validation set-2 data 

comprising 6 compounds. A.) Actual versus 

Predicted data B.) Predicted versus Actual values 

data 
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Figure 6: Regression plot showing training set (blue spheres) data and test set (triangles) of QSAR Model-2. 

 

Test set data-3 (Equation 6): 

Test set data-3 graphs were given in Figures 7 and 8. Values corresponding to k (actual Vs predicted) 

and k’ (predicted Vs actual) and R
2
-R0

2
/R

2
are presented here, where it was observed that these parameters are 

within the limits.  

 

Actual Vs Predicted – Test set-

3 

Actual 

Values 

Predicted 

Values 

0.889302 0.808132 

1.33746 1.50851 

-0.76268 -0.83829 

-0.52375 -0.45109 

0.060698 0.022322 

0.633468 0.516812 
 

 

 

k = 1.0434 

 

R
2
 = 0.9846 

R0
2
 = 0.9839 

  

R
2
-R0

2
/R

2 
= 0.0007 

 

 
   

Predicted Vs Actual – Test set-

3 

Actual 

Values 

Predicted 

Values 

0.808132 0.889302 

1.50851 1.33746 

-0.83829 -0.76268 

-0.45109 -0.52375 

0.022322 0.060698 

0.516812 0.633468 
 

 

 

k' = 0.9583 

 

R
2
 = 0.9846 

R0
2
 = 0.9836 

  

R
2
-R0’

2
/R

2
 = 0.001 

 

  Figure 7: Graph showing validation set-3 data 

comprising 6 compounds. A.) Actual versus Predicted 

data B.) Predicted versus Actual values data 
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Figure 8: Regression plot showing training set (blue spheres) data and test set (triangles) of QSAR Model-3. 

 

Table 4 represents the predictive ability of all newly generated models. R
2

cvext which is an external set 

cross validation was found to be 0.99 for all the three model equations. 

 

Table 4. Predictive ability of validation sets for all 3 equations obtained as models. 
Vara R2

cv,ext (q
2) R2 k k’ Eqb Eqc 

7 0.999 0.910 0.953 1.048 0.0005 0.0004 

4 0.999 0.861 0.961 1.039 0.0001 0.0007 

6 0.999 0.879 1.043 0.958 0.0007 0.001 
a
number of significant variables 

b
 (R

2
 – R0

2
) / R

2 

c
 (R

2
 – R0’

2
) / R

2
 

 

FIT Kubinyi function 

To define the statistical quality of activity prediction, the number of variables that enter in to a QSAR 

model are compared by using FIT Kubinyi function (Eq. 7), a criteria closely related to F value was proven to be 

useful. The best model will be the one that possess a high value of this function. 

 

FIT = R
2 
(n – k – 1) / (n + k

2
) (1 – R

2
)     (Eq 7) 

Where n is the number of compounds in training set and k is the number of variables in the QSAR equation. 

 

Table 5. FIT Kubinyi data obtained for all QSAR models. 
Eq No. r2 k n FIT 

4 0.910 7 63 4.96 

5 0.861 4 63 3.04 

6 0.879 6 63 3.57 

 

According to the statistical values of the models reported in Table 5, we choose the model with seven 

variables (Eq. 4) since this showed high FIT than others. The observed, calculated and predicted values of the 

statistically significant seven parameter QSAR model (Eq. 4) is presented in Table 3. 

Equation 4 accounts for the significant correlation of descriptors with biological activity and displayed 

good internal predictivity as shown by q
2
 value of 0.99 and was able to explain 91 % variance of inhibitory 

activities of derivatives. Observed verses predicted values of molecules in training and validation set are shown 

graphically in Figures 3 and 4. The proposed QSAR model Eq. 4 illustrated the predictive ability of the model. 

The model was further validated by applying the y-randomization test. Random shuffles of the 

dependent as well as independent variables were performed and the results presented in Table 6. The low R
2
 and 

Q
2
 values indicate that the results obtained in the QSAR model (Eq. 4) are not due to chance correlation. 
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Table 6. R
2
 and Q

2
 values after several y-randomization tests 

Iteration R2 Q2  

1 0.22 0.34  
2 0.25 0.11  

3 0.36 0.12  

4 0.27 0.15  
5 0.30 0.24  

6 0.41 0.17  

7 0.33 0.12  
8 0.29 0.18  

9 0.43 0.29  

10 0.18 0.22  

 

The generated QSAR model (Eq. 4) indicates that a high value of LUMO energy contributes negatively 

to the activity whereas an increase in HOMO generates positive inhibition. Molecular Orbital (MO) surfaces 

denote several constant electronic distributions of a chemical compound or ligand. As per Frontier Orbital 

theory, the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) are critical in 

forecasting the reactivity of a species. HOMO is the outermost orbital comprising the electron and LUMO is the 

first orbital that does not encompass an electron. The electron donating nature of a compound is measured by 

HOMO and the energy of the LUMO measures electron accepting property (Hall LH, et al.,1991). The lower the 

LUMO value, the stronger is the electrophilicity.  

Electron-withdrawing substituents (for example, halogens) decrease the LUMO energy on the 

molecule. Molecules with low-lying LUMOs have greater tendencies to accept electrons than those with high-

energy LUMOs. As LUMOincreases the molecule becomes less reactive (Hall LH1991). Thus, designing 

analogs with electron-withdrawing substituents would improve ERα inhibitory activity.  

From equation 4 it can be observed that an increase in H-bond acceptors, donors and LogP would 

enhance ERα inhibition. Proper spatial orientation of H bond donor and acceptor groups of ligand is important 

to interact with the acceptor and donor atoms of amino acid residues in the active site region of ERα. On the 

other hand, reduction of lipophilic character on the compounds would increase bioactivity. 

 

IV. Conclusion 
One of the most important contributions of the MCF-7 cell line to breast cancer research has been its 

utility for the study of the estrogen receptor (ER) alpha, as this cell line is one of a very few to express 

substantial levels of ER. It was reported that anti-estrogens inhibited growth of MCF-7 cells. In search to 

identify novel ERα inhibitors, QSAR analysis was carried out on a set of 80 ERα inhibitors reported in literature 

to identify the influential parameters responsible for biological activity. About 11 data points as outliers were 

removed from analysis based on Relative Error calculation and Standardized Residuals and three new QSAR 

models were constructed with 7, 4 and 6-variables, wherein the model with 7 variables was found to be best 

model based on FIT Kubinyi function. This model suggested an increase in HOMO, H-bond acceptors, donors 

and LogP with reduction in LUMO and lipophilic character would enhance ERα inhibition. Further, virtual 

screening of novel analogs with these associated properties is under investigation using molecular docking 

techniques. 
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