IOSR Journal of Polymer and Textile Engineering (IOSR-JPTE)
e-1SSN: 2348-019X, p-ISSN: 2348-0181, Volume 9, Issue 4 (Jul. — Aug. 2022), PP 01-12
Www.iosrjournals.org

Comparing the Effectiveness of various Machine Learning
Models in the Fault Detection in Steel plates

Argha Chatterjee!, Koushik Majumder®, Bidesh Roy? Debjit Hazra?, Swapnanil
Das?,Ronojoy Chakraborty® Shiba Dey’

Abstract: With the advent of technology revolution, modern industries are adopting new methods for detecting
defects in the steel plates that have affected the inspection quality for a long time. The new methods include use
of Al Machine learning, image processing, deep learning, neural network and many other processes. After the
steel is freshly cut there could be several defects like stains and scratches on the surface of the steel that could
make it ineffective for usage purposes. The manual methods are very time taking and labour intensive and prone
to unattended defects hence the attempts to find alternative solutions that are more effective and beneficial for
the overall steel industry. Through our technique we try to train machine learning for automatic pattern
recognition. The various machine learning algorithms that have been applied for training include Logistic
Regression, Decision Tree, Support Vector Machine, K Nearest Neighbour, Gaussian Naive Bayes and Random
Forest. Also, various feature extraction techniques like Principal Component Analysis, Linear Discriminant
Analysis and Simple classification are applied on the data before the machine learning algorithms are applied.
Each of these methods are applied on the training data to see which had more accuracy and then the accuracy
is compared, and a final ranking is done for the various machine learning algorithms.

Date of Submission: 02-08-2022 Date of Acceptance: 15-08-2022

I. Literature Review
. Jubin Deepakkumar Kothari did a similar project of detecting defects in steel plates using Machine
Learning and Computer Vision Algorithms. His studies found that using convolutional Neural Network and U-
Net architecture makes the process more efficient resulting in an accuracy of 98.3%
. Yu- Jen Huang, Ko Wei Huang and Shih Hsiung Lee performed a similar study using Deep Learning
Technology. They used existing Deep learning techniques for object detection like YOLOv3 and SSD for
effectively detecting the defects in stainless steel plates.
) Shuai Wang, Xiaojun Xia, Langing Ye and Binbin Yang did a study for detection and classification of
steel surface defects using deep convolutional neural networks which resulted in an accuracy of 98.2% and an
average faster running time.

I. Introduction

Steel factories today are facing huge problems that arise because of defects in the steel plates. Steel
plates are required in several industries like automobile, defence, machinery, chemicals, etc. The various types
of defects that these freshly cut steel plates are prone to include stains, scratches, bumps, dirtiness. Manual
methods of detection are still prevalent in the industry, but several new methods are coming up.
The objective of this research is to propose a method to understand the defect detection methods in steel plates
using various machine learning techniques like Logistic Regression, Decision Tree, Support Vector Machine, K
Nearest Neighbour, Gaussian Naive Bayes and Random Forest.

Il. Material And Methods

The methodology that we obtained was to run various Machine Learning Algorithms on the data and
then verify their scores and Accuracy to see which algorithm gives the best output. The data was standardized
and then split into training and testing data. Then Principal component analysis was run on 10 principal
components out of the 27 features available. First, we applied Logistic Regression on the data and obtained the
scores and accuracy. Then we applied Decision Tree, Support Vector Machine, K Nearest Neighbour, Gaussian
Naive Bayes, Random Forest. For dimensionality reduction we applied Linear Discriminant Analysis and
performed Logistic Regression, Decision Tree, Support Vector Machine, K Nearest Neighbour, Gaussian Naive
Bayes and Random Forest and calculated the accuracy for each case. Next, we did simple classification without
dimensionality reduction and then did Logistic Regression, Decision Tree, Support Vector Machine, K Nearest
Neighbour, Gaussian Naive Bayes, and Random Forest.

DOI: 10.9790/019X-09040112 www.iosrjournals.org 1| Page

Comparing the Effectiveness of various Machine Learning Models in the Fault Detection in ..

Once the results are obtained from each of the cases the results were compared. First was scores and
accuracy between various models using Simple Classification, Principal Component Analysis and Linear
Discriminant Analysis. Then scores were compared for each model for each of the techniques Simple
Classification, Principal Component Analysis and Linear Discriminant Analysis. The Accuracy was compared
for each model for Simple Classification, Principal Component Analysis and Linear Discriminant Analysis.
According to the comparison of the results we were able to reach a conclusion on the ranking of various models

as per their accuracy.

About The Data

The dataset consists of steel plates’ faults which are divided in to 7 different types.

The dataset consists of 27 features describing each fault (location, size, ...) and 7 binary features indicating the
type of fault (on of 7: Pastry, Z_ Scratch, K_Scatch, Stains, Dirtiness, Bumps, Other_Faults). The latter is
commonly used as a binary classification target (‘common' or 'other’ fault.)

Attribute Information

*V1: X_Minimum

*V2: X_Maximum

*V3: Y_Minimum

*V4: Y_Maximum

*V5: Pixels_Areas

*V6: X_Perimeter
*V7:Y_Perimeter

*V8: Sum_of_Luminosity
*V9: Minimum_of_Luminosity
*V10: Maximum_of_Luminosity
*V11: Length_of_Conveyer
*V12: TypeOfSteel_A300
*V13: TypeOfSteel _A400
*V14: Steel_Plate_Thickness
*V15: Edges_Index

*V16: Empty_Index

*V17: Square_Index

*V18: Outside_X_Index
*V19: Edges_X_Index
*V20: Edges_Y_Index
*\/21: Outside_Global_Index
*V22: LogOfAreas

*V23: Log_X_Index

*V24: Log_Y_Index

*V25: Orientation_Index
*V26: Luminosity_Index
*\V27: SigmoidOfAreas
*\/28: Pastry

*\29: Z Scratch

*V30: K_Scatch

*V31: Stains

*\/32: Dirtiness

*V33: Bumps

* Class: Other_Faults

DOI: 10.9790/019X-09040112

www.iosrjournals.org

2 | Page

Comparing the Effectiveness of various Machine Learning Models in the Fault Detection in ..

1. Result
Visualizing the Fault Distribution and Correlation

Pastry

f;:
]
o

Bumps Dirtiness Stains

Faulls

Pasiry Z_Zcralch K_Scaich Stains Dirfimess Bumps Other_Faulls

Other,

Cther_Faults
00

-

- - -

Prairy 7_Serstch W_Scalch Staing Dirtiness Bumps O Fauks
Favilts

Creating Training and Testing Data Set
The data set is first divided into training and testing data set and then the various machine learning technigques
are applied on the training data.

Spliting the Data for Training and Testing
In [53]: | from sklearn.model_selection import train_test_split
In [54]: |x_train, x_test, y train, y_test = train_test_split(X, y, test_size = 8.58, random_state = 42}

In [55]: |x_train.shape
ut[55]: (978, 27)

In [57]: |y_train.shape
Qut[57]: (a7a,)

In [SB]: | x_test.shape

Dut[SE]: (971, 27)

In [59]: | y_test.shape

ut[50]: (971,)

DOI: 10.9790/019X-09040112 www.iosrjournals.org 3| Page

Comparing the Effectiveness of various Machine Learning Models in the Fault Detection in ..

Principal Component Analysis
Next, we apply the Principal Component Analysis method for reducing the data dimensionality of the data. We
will take 10 Principal Components out of the given 27 features available in the dataset.

Applying Principal Component Analysis
We will take 10 Princigal Componsants, out of 27 Features available with us.
In [G68]: | from sklearn.decomposition import PCA
In [62]: |peca=PCA(18)
In [63]: | pca.fitx_test)
Out[63]: PCA[copy=True, iterated power='auto';, n_components=13;, random_state=Mone,

svd_solver='auto', tol-=2.8, whiten-Falie)
In [64]: | pca_train=pca.transform{x_Ctrain)
In [65]: | pca_test=pca.transform{x_test)
In [GG]: | pca_train=x_train
In [67]: | pca_test=x_Lest
In [GE]: |pca_score= ng.2eros(6)

In [69]: | pca_accuracy= np.Zeras{6)

Logistic Regression
After Principal Component Analysis is done, we apply the Logistic Regression method on the data.

Applying Logistic Regression
Logistic regression is 3 statistical model that in its basic form uses a logistic function to model 3 binary dependent variable
n [78]: from sklearn.linear_model import LogisticRegression as LR

o [71]: | Logistic_Regression = LR().fit{pca_train,y_train)
C:\ProgramData\Anacondaldilib\site-packageshsklearnilinear_model) logistic.py:od8: ConvergenceWarning: lbfgs failed to converge
(status=1):

STOP: TOTAL MO. of ITERATIONS REACHED LIMIT.

or scale the data as shown In:

Increase the number of iterations (max_iter)

siffscikit-learn.orgfstabl ules /preprocessing. html
10 refer to the d entati for alternative solver options:
tps:frscikit-learn.ol table/modules/linear_model. htmlilogistic-regression

extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)

n [72]: pea_score[@]=Logistic_Regression.score{pca_traln,y_traln)

n [73]: predictions_LR = Logistic Regression.predict(pca_test)
Accurscy of Prediction using Legistic Regression

n [74]: | from sklearn.melric: import Accuracy_score

n [75]: | pea_accuracy[@)=accuracy_score{y_test; predictions_LR})

n [77]: | pea_accuracy[@]*1e8

ut[77]: 73.8175877239958E

DOI: 10.9790/019X-09040112 www.iosrjournals.org 4| Page

Comparing the Effectiveness of various Machine Learning Models in the Fault Detection in ..

Decision Tree

Decision Tree method is applied on the same data and accuracy is predicted.

v [B1]: | predictiens BTC = Decision_Tree Classifier_p

Applying Decision Tree

1V [TE]: | from skléarn.tree ieport DecicionTreellassifier as DTC

v [79]: |Decision_Tree_Classifier = DTC().fit{pca_train,y_traln)

[1E1]: | pea_scere[1]=Decision_Tree_Classifier.score(pca_train,y_train)

dict{pca_test)

Accuracy of Prediction using Logistic Regression

\ [B3]: | pea_accuracy[1]=accuracy_score(y_test, predictions_DTC)

[B4]: | pea_accuracy[1]*108

Jut[B4]: G3.B27EBG3IES5169924

W= get §3.02 % Accuracy using "Decision Tree”

Support Vector Machine
A similar analysis is done applying the Support Vector Method and K Nearest Neighbours method and Gaussian
Naive Bayes and Random Forest method.

In [85]
In [B6]
In [&7]
In [BE]
In [21]
In [92]
In [93]
In [24]
In [25]
In [96]
In [97]
In [98]

[oE]

Applying Support Vector Machine

;| from sklearn.svm import SVC

5]: | SVE = SWO().Fit(pca_train,y train)

: | pea_score[2]=5VW.score{pea_train,y_train}

: | predictions_SWC = SWC.predict{pca_test)

Accuracy of Prediction using Support Vector Machine

;| pea_accuracy[2]=accuracy_scorely test, predictions_SVI)

;| pea_accuracy[2]* 188

T7.34254541785578

We get T7.34 % Accuracy using “Support Vector Machine™

Applying K-Nearest Neighbours

i]: | from sklearn.neighbors isport KNeighborsClascitier as KNC

- K_Meighbors Classifier = KNC(8).fit{pca_train,y_train)

: | pca_score[3]=K_MNeighbors_Classifier.score(pca_train,y train}

: | predictions_KNC = K_Neighbors_Classifier.predict(pca_test)

Accuracy of Prediction using K-Nearsst Neighbours

: | pea_accuracy[3]=accuracy_score{y_test, predictions KHC)

: | pea_accuracy[3]*188

71 98764168655114

Ve get 71.98 % Accuracy using "K-Nearest Neighbours™

DOI: 10.9790/019X-09040112 www.iosrjournals.org

5 | Page

Comparing the Effectiveness of various Machine Learning Models in the Fault Detection in ..

Applying Gaussian Naive Bayes
In [99]: | from sklearn.naive_bayes import GaussianNB as GNB
In [188]: GNB = GMB().¥it{pca_train,y_train)
In [181]: | pca_score[2]=GME. score{pca_train,y_train)
In [182]: | predictions_GNB= GNB.predict{pca_test)
Accuracy of Prediction using Gaussian MNaive Bayes
In [183]: | pca_accuracy[4]=accuracy_score(y_test, predictions_GMB)

In [184]: | pca_accuracy[4]*188

Oui[18d] 50 _3282BRIG2512876

Ve get 50032 % Accuracy using "Gsussian MNaive Bayes”

Applying Random Forest
In [185]: | from sklearn.ensemble import RandomForestClassifier as RF
In [1BG]: RF = RF{).fit{pca_train,y_train)
In [187]: | pca_score[5])=RF.score{pca_train,y_train)
In [188]: |predictions_RF= RF.predict(pca_test)
Accuracy of Prediction using Randem Forest
In [183]: | pca_accuracy[S)=accuracy_scerely_test, predictions_RF)

In [118]: | pca_accuracy[5]*188

Jut[118]: 7E.STATE4TSTIA145

We get T8.57 % Accuracy using "Random Forest”

Linear Discriminant Analysis

We then perform Linear Discriminant Analysis on the given data to reduce the number of features into more
manageable numbers.

Applying Linear Discriminant Analysis

Linear Discriminant Analysis is most commenly used as dimensionality reduction technique in the pre-processing step for pattern-classification and machine
learning purposes.

In [111]: | froa sklearn.discriminant_analysis import LinearDiscriminantAnalysis
In [112]: | lda=LinearDiscriminantanalysisy)

In [113]: |lda_train = lda.fit(x_test, y_test)

In [114]: | lda_train=1da.transform{x_train)

In [115]: | lda_test=lda.transform{x_test)

In [116]: |lda_score= np.2eros(6)

In [117]: | lda_accuracy= np.zeros(f)

Next, we apply the machine Learning methods like Logistic Regression, Decision Tree, Support Vector,K
Nearest Neighbour, Gaussian Naive Bayes and Random Forest on the data obtained from the Linear
Discriminant Analysis and calculate the Accuracy of prediction.

DOI: 10.9790/019X-09040112 www.iosrjournals.org 6 | Page

Comparing the Effectiveness of various Machine Learning Models in the Fault Detection in ..

Applying Logistic Regression 1

lda_accuracy[@)=accuracy_score{y_test, predicti

C:'\ProgramData\Anacondalllib\site-packagesisklearnilinear_model_logistic.py:248: ConvergenceWarning: lb¥gs failed to converge
(status=1):
STOP: TOTAL WO. of ITERATIOMS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown In:
h cikit-learn.org/stable/modul processing. html
Please also refer to the documentation for alternative solver opticas:

kit-learn.org/stable/modules /]l inear_model . hitr
extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)

Wlogistic-regression

Prediction Accuracy

lda_accuracy[@]*188

TZ_39958BAS355185

Wie get T2.30 3 Accuracy using LDA- "Logistic Regression”

Applying Decision Tree

1 [128]: |Decision Tree Classifier = DTC().fit(lda_train,y Lrain)
1da_score[1]=Decision_Tree_Classifier.score(lda_train,y_train)
predictions DTC = Decision_Tree Classifier. cb(lda_test)
lda_accuracy|[l]=accuracy_score(y_test, predictions_DTC)

Prediction Accuracy
1 [121]: | lda_accuracy[1]*188
Out[121]: B3.64572685561277

We get §2.54 % Accuracy using LDA- "Decision Tree”

Applying Support Vector Machine

1 [123]: | from sklearn.svm import SWC
SWC = SVC().Fit{lda_train,y_train)
lda_score[2]=5WC.score{lda_train,y_train)
predicti SWC = SVC.predict{lda_test)
lda_accuracy|2]=accuracy _score(y_test, predictions_SWC)

Prediction Accuracy

1 [128]: | lda_accuracy[2]*1ee

Out[12E]: £9.51596202481977

We get §8.51 % Accuracy using LDA- "Support Vector Machine”

DOI: 10.9790/019X-09040112 www.iosrjournals.org 7 | Page

Comparing the Effectiveness of various Machine Learning Models in the Fault Detection in ..

Applying K-Nearest Neighbours

In [138]: |K_Neighbors_Classifier = KNC(18).fit(lda_train,y_train)
1da 3]=K_Meighbors_Classifie (1da_train,y_train)
predi s_KMC = K_Meighbors_Classifier.predict(lda_test)
lda_accwracy[3]|=accuracy_scorely_Lest, predictions KNC)

Prediction Accuracy
In [131]: | lda_accuracy[3]*188
Out[131]: 74.356331357662284

We get 74.35 % Accuracy using LDA- "K-Mearsst Neighbours”

Applying Gaussian Naive Bayes

In [133]: |from sklearn.naive_bayes import GaussianNB as GHE

GHE = GNB().fit{lda_train,y_train}

lda_s L]=GHEB.score(lda_ in,y_train)

predi 5_GMB= GNB.predic _
lda_accuracy[4]-accuracy_scorely_test, predictions GNE)

Prediction Accuracy

In [134]: | lda_accuracy[4]*188

Oul[134]: 54.95%4B50G59412570

We get 5480 % Accurscy using LDA- "Gaussian Maive Bayss”

Applying Random Forest

In [135]: |from sklearn.ensemble import RandonForestClassifier as RF
RF = RF{).Fit{lda_train,y_train)
lda_score[5]=RF.score({lda_train,y_train)
predictions_RF= RF.predict(lda_test}
1da_accuracy[S)=accuracy_score(y_test, predictions RF)

Prediction Accuracy
In [136]: |lda_accuracy[5]*188
Oub[136]: 75.41686501143152

We get T6.41 3% Accuracy using LDA- "Random Forest”

Simple Classification Method:

Simple Classification method without dimension Reduction is applied on the data and then the Machine
Learning algorithms are applied one by one like Logistic Regression, Decision Tree, Support Vector, K Nearest
Neighbour, Random Forest and Gaussian Naive Bayes.

Applying Simple Classification without Dimension Reduction

Tn [138]: | simple_scores np.zeros(s)
simple_accuracy= np.zeros(G)

DOI: 10.9790/019X-09040112 www.iosrjournals.org 8 | Page

Comparing the Effectiveness of various Machine Learning Models in the Fault Detection in ..

Applying Logistic Regression

In [139]: | Logistic_Regression = LR({).fit{x_train,y_train)
simple_score[@]=Logistic_Regression.score(x_train,y_t
predictions_LR = Logistic_Regression.predict{x_test
simple_accuracy[8]=accuracy_score(y_test, predictions_LR)

C:\ProgranData\Anacondal|lib\site-packages\sklearn)linear_modell_logistic.py:948: ConvergenceWarning: lbfgs failed to converge
(status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
scikit-learn.org/stable /modules/preprocessis ml

efer to the documentatien for alternative solver optiens:

cikit-learn.org/stable/modules /1inear_model htmlilogistic-regression

extra_warning_msg=_LOGISTIC_SOLVER_CONVERGEMCE_MSG)

Predicting Accuracy

In [148]: | sinple_accuracy[8]*188

Out[148]: 73 @1758772399588

We get T3.01 % Accuracy using Simple Classification- “Logistic Regression”

Applying Decision Tree

Decision_Tree Classifier = DTC().fit(x_train,y_train)
c e(x_train,y_train)

simple_score[1]=Decision_Tree Classif
T etix_test)

Classi
simple_accuracy[1]=accuracy_score(y_test, predictiens_DTC)

predictions DTC = Decisi

Predicting Accuracy

simple_accuracy[1]*188

64.57268556127783

We get 4.

Accuracy using Simple Classification- "Decision Tree”

Applying Support Vector Machine

from sklearn.svm mpert SVC
SVC = SVC().fit(x_tralin,y_train)
_score[2]=SVC.score(x_train,y_train)

ictions_SVC = SVC.predict{x_test})
simple_accuracy[2]=accuracy_scorely_test, predictions_SVC)

Predicting Accuracy

In [145]: | simple_accuracy[2]*18@

77.342545417@9578

We get 77.34 3% Accuracy using Simple Classification- “Support Wector Machine™

Applying K Nearest Neighbour

In [146]: | K_Weighbors_Classifier = KNC(18).fit(x_train,y_train)
simple_score[3]=K_Nelghbors Classifier.score(x_train,y_train)
predictions KNC = K_Melghbors_Class predict(x_test)
simple_accuracy[3]=accuracy_scorely_test, predictions_KNC)

Predicting Accuracy

sinple_accuracy[3)*1ee

71.266731532448783

We get 71.26 % Accuracy using Simple Classification- "K. Nesrest Meighbour”

DOI: 10.9790/019X-09040112 www.iosrjournals.org 9 | Page

Comparing the Effectiveness of various Machine Learning Models in the Fault Detection in ..

Applying Gaussian Naive Bayes

In [145]: |from sklearn.naive_bayes import GaussianhB as GNB
GNB = GNB().Fit{x_train,y_train)
simple_score[4]=GNB.score(x_train,y_train)

predictions GMEB= GNB.prediel(x_test)
sinple_accuracy[4]=accuracy_score(y_test, predictiens_GNB)

Predicting Accuracy
In [158]: simple_accuracy[4]*188
Out[158]: S0.3282BEI62512876

e get 5032 % Accuracy using Simple Classification- "Gaussian Naive Bayes”

Applying Random Forest

In [151]: | from sklearn.ensemble import RzndonforestClassifier as RF
RF = RF{18).fit{x_train,y_train)
sinple_score[5]=RF.score(x_train,y_train)
predictions_RF= RF.predict{x_test)
simple_accuracy[S]=accuracy_score(y_test, predictions_RF)

Predicting Accuracy
In [152]: | simple_aceuracy[5]*18@
Out[152]: 71.G78681771365872

We get T1.87 % Accuracy using Simple Classification- "Random Forest”

Comparison of the Results

After we applied the various Machine Learning models, we tried to compare the score and accuracy of each of
the models. First, we compared the scores and accuracy for each of the models with simple classification
method applied for classification.

MAGHINE LEARNING MODELS LISING SIMPLE CLASSH ICATION

- SCORES
00

WO |- Accurcy 96,67
e LA nar
g
i
§
fa

Duesion_Tros K Neighbers. v Farddom Forest

Next, we compare the results for the Machine Learning Algorithms when we have applied Principal Component
Analysis as given in the below diagram.

MACHINE LEARNING MODELS USING PRINCIPAL COMPONCNT ANALYSIS

wa\»\rrlwyr‘mmmn

o T
I | HI

Ducision_Trse Fandom et

DOI: 10.9790/019X-09040112 www.iosrjournals.org 10 | Page

Comparing the Effectiveness of various Machine Learning Models in the Fault Detection in ..

And then we compare the results for the Machine Learning Algorithms when we have applied Linear
Discriminant Analysis as given in the below diagram.

ORLS

V. Conclusion
From the visualization on the accuracy given above we can rank the models as given below:
Rank 1: Random Forest
Rank 2: Support Vector
Rank 3: K Nearest Neighbor
Rank 4: Logistic Regression
Rank 5: Decision Trees
Rank 6: Gaussian Naive Bayes
We can conclude that Random Forest method is the most effective method for detection of faults in the steel

plates for the given data with accuracy of 78.58 % for PCA, 76.42 for LDA and 71.68 for Simple classification.

References

[1]. Luo, Q.; Fang, X.; Liu, L.; Yang, C.; Sun, Y. Automated Visual Defect Detection for Flat Steel Surface: A Survey. IEEE Trans.

[2]. Instrum. Meas. 2020, 69, 626-644. [CrossRef]

[3]- Thomas, G.B.; Jenkins, M.S.; Mahapatra, R.B. Investigation of strand surface defects using mould instrumentation and modelling.

[4]. Ironmak. Steelmak. 2004, 31, 485-494. [CrossRef]

[5] Shi, T.; Kong, J.; Wang, X.; Liu, Z.; Zheng, G. Improved Sobel algorithm for defect detection of rail surfaces with enhanced
efficiency and accuracy. J. Cent. South Univ. 2016, 23, 2867-2875. [CrossRef]

[6]. Liu, Y.; Xu, K.; Wang, D. Online Surface Defect Identification of Cold Rolled Strips Based on Local Binary Pattern and Extreme

[7]. Learning Machine. Metals 2018, 8, 197. [CrossRef]

[8]. Wang, Z.; Zhu, D. An accurate detection method for surface defects of complex components based on support vector machine and
spreading algorithm. Measurement 2019, 147, 106886. [CrossRef]

[9]. Kang, G.; Liu, H. Surface defects inspection of cold rolled strips based on neural network. In Proceedings of the 2005 International

[10]. Conference on Machine Learning and Cybernetics(ICMLC 2005), Guangzhou, China, 18-21 August 2005; pp. 5034-5037.

[11]. Di, H.; Ke, X.; Peng, Z.; Zhou, D. Surface defect classification of steels with a new semi-supervised learning method. Opt. Laser.

[12]. Eng. 2019, 117, 40-48. [CrossRef]

[13]. Schlegl, T.; Seebdck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised Anomaly Detection with Generative

[14]. Adversarial Networks to Guide Marker Discovery. In Proceedings of the 25th International Conference on Information Processing
in Medical Imaging (IPMI 2017), Boone, NC, USA, 25-30 June 2017; pp. 146-157.

[15]. Lee, S.Y.; Tama, B.A.; Moon, S.J.; Lee, S. Steel Surface Defect Diagnostics Using Deep Convolutional Neural Network and Class

[16]. Activation Map. Appl. Sci. 2019, 9, 5449. [CrossRef]

[17]. Tabernik, D.; Sela, S.; Skvar™c, I.; Skocaj, D. Segmentation-based deep-learning approach for surface-defect detection. J. Intell.

[18]. Manuf. 2020, 31, 759-776. [CrossRef]

[19]. Prappacher, N.; Bullmann, M.; Bohn, G.; Deinzer, F.; Linke, A. Defect Detection on Rolling Element Surface Scans Using Neural

[20]. Image Segmentation. Appl. Sci. 2020, 10, 3290. [CrossRef]

[21]. Li, J.; Su, Z.; Geng, J.; Yin, Y. Real-time Detection of Steel Strip Surface Defects Based on Improved YOLO Detection Network.

[22]. IFAC PapersOnLine 2018, 51, 76-81. [CrossRef]

[23]. Wei, R.; Song, Y.; Zhang, Y. Enhanced Faster Region Convolutional Neural Networks for Steel Surface Defect Detection. ISIJ Int.

[24]. 2020, 60, 539-545. [CrossRef]

[25]. Oh, S.-J; Jung, M.-J.; Lim, C.; Shin, S.-C. Automatic Detection of Welding Defects Using Faster R-CNN. Appl. Sci. 2020, 10,
8629. [CrossRef]

[26]. Borselli, A.; Colla, V.; Vannucci, M.; Veroli, M. A fuzzy inference system applied to defect detection in flat steel production. In
Proceedings of the 2010 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2010), Barcelona, Spain, 18-23 July 2010;
pp. 1-6.

[27]. Zapata J., Vilar R., and Ruiz R., "Performance evaluation of an automatic inspection system of weld defects in radiographic images
based on neuro-classifiers ", Expert Systems with Applications, Vol. 38, pp. 8812 — 8824, 2011.

[28]. Liao, T.W.," Improving the accuracy of computer-aided radiographic weld inspection by feature selection *, NDT&E International,
Vol. 42, pp. 229-239, 2009.

DOI: 10.9790/019X-09040112 www.iosrjournals.org 11 | Page

Comparing the Effectiveness of various Machine Learning Models in the Fault Detection in ..

[29]. Ankit Narendrakumar Soni 2018. Data Center Monitoring using an Improved Faster Regional Convolutional Neural Network.
International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 7, Issue 4, April 2018.

[30]. Vilar, R., Zapata, J., and Ruiz, R.," An automatic system of classification of weld defects in radiographic images ", NDT & E
International, Vol. 42, pp. 467-476, 2009.

[31]. Shafeek H.l., Gadelmawla E.S., AbdelShafy A.A. and Elewa I.M.," Assessment of welding defects for gas pipeline radiographs
using computer vision ", NDT&E International, Vol. 37, pp. 291-299, 2004.

: Argha Chatterjee, et. al. “Comparing the Effectiveness of various Machine Learning Models in the |
. Fault Detection in Steel plates.” I0SR Journal of Polymer and Textile Engineering (IOSR-JPTE), |
| 09(04), 2022, pp. 01-12. :
1 1

o - - = = = = - -

DOI: 10.9790/019X-09040112 www.iosrjournals.org 12 | Page

