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Abstract: In this paper we consider probabilistic competitive balance (CB) models for how football teams 

perform in English Premier League (EPL) play.  While individual game outcomes are measured, they serve to 

only create the league table, and then over multiple seasons.   This is a comprehensive model that attempts to 

model outcomes to accurately reflect actual league performance.  For example, how does the top ranked team 

perform during a given season? Or over many seasons? Can the lower ranked teams do well or even win the 

championship? What is the shape of the points distribution over a simulated season?   To make this model, we 

consider three fundamental factors, team skill, number of significant events during a match, and a criteria to 

win an event, lose, or tie a match. We then simulate the play focusing on the significant events relative to any 

two contestants.      

Keywords: Simulation, Football modeling, Prediction 

 

I. Introduction 
With only a few parameters in the model, which require considerable tuning, how can it be that the 

myriad of factors affecting team outcomes can be accurately modeled?  We basically only utilize team skill 

levels and for an individual game the number of significant events that occur for pairs of teams.  With just these 

factors, the model produces results remarkably similar to actual outcomes.  Particularly interesting are the mid 

range teams that show a remarkable variation in their league outcomes as compared with both top and bottom 

ranked teams. We also compare the spread of winning percentage from the bottom to the top team and show the 

model accurately predicts it to be in the 40-60% range.  Naturally, when the league champion and top ranked 

teams have rather high winning percentages the lowest and relegated teams have a rather low winning 

percentages, or points.  Factors for professional sports leagues are remarkably similar, though league play varies 

considerably.  There are common desiderata.   The idea is that outcomes should be mildly but not strictly 

predictable.  At the beginning of a season, we often read, "All the experts predict Team A should win the 

championship. Team B has scarcely a chance to do well.”  Only a minority are disappointed when either don't.  

During the course of each match there is a definite but highly complex random behavior, not nearly as simply as 

flipping a coin.  There are dozens of nuances that affect games, and a model applying even few dozen factors 

probably will not achieve results comparable with experts such bookmakers [1]. A generalized probabilistic 

model can usually do as well, though not match-to-match.   It seems a natural human trait not to expect the top 

team to win and the bottom team to do better than expected.  We separate amateur (e.g. college) and 

professional teams, as the goals are quite different.  The fans of the fictitious Dickensonian Small College that 

has a final win-tie-loss record of 2-2-21 diminishes the value only for the season, but not so much the 

enthusiasm of the fans, or compel a coaching change.   Indeed, we do see in amateur college sports extremely 

wide variations between winning and losing percentages within and across divisions.   Here are some other 

expectations, at least in professional sports.  Any model must accommodate these types of outcomes. 

1. The season outcome should not be determined.  There should be wide latitude from the league winner and 

that of other teams.  Even the most favored team should have only about 40-60% chance of winning the 

league championship.  

2. The difference between winners and losers should be significant but not ridiculously high.  About a 35-55% 

spread in percentage between league winner and loser is acceptable. For a sport with multiple outcomes as 

ties, the notion of percentage wins needs some clarification. For football the percentage is easily computed 

as (3* ) /wins ties pts available .  In other leagues, such as the Spanish La Liga, with three teams 

perennially dominant, the differential is higher.   However, this spread holds with other sports leagues such 

as American baseball.   In basketball, the spread varies widely from about 20-60%.  In NCAA basketball 

the spread may be up to 80% and rarely below 50%.  The latter reflects the nature of a limited talent pool, 

including coaching and the college’s internal emphasis on winning.  Models for various leagues depend on 

these factors, particularly a vector we call the skills profile.  

3. The outcome of any particular match is undetermined, particularly when the teams are equally matched.  

Nonetheless, any model should illustrate the outcomes can go either way, even between the best and worst 

teams.  This does indeed happen, and because it is so striking, we tend to remember it, forgetting how rare it 

may be.  For example, in 2012 the semi-pro team (Luton) defeated EPL team Norwich.  
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The general outline of this paper follows traditional lines for simulations.  After a discussion of relative 

team skills a new notion of significant events per match (Section 3)  we define the competition matrix, creating 

the a set of probabilities of how one team interacts with another (Section 4) for a win, tie, or loss.    For a league 

of 20 teams such as the EPL this would necessitate the assignment of 190 values.  At this point we look at W-D-

L data for the EPL over the recent seasons to assign skills to respective teams (Section 5).  This assignment is 

rather a significant task.  Then, we give a detailed description of the simulation model used here where another 

new notion of event horizon is introduced  (Section 6).  The core portion of the paper is the report out of results.   

In Section 7 we discuss the net outcomes from the model as statistically compared with actual EPL data.  In 

addition, a matrix of frequencies of how the variously ranked teams perform and their final rank positions 

compared with their initial rank. Section 8, on conclusions, critiques the model and poses numerous questions 

toward its improvement.  

 

II. A Brief Review of Literature 
In professional sports, owners do all they can to support and improve their teams.  They try to hire the 

best managers and players within their proclivities and budgets. These and other factors generate the 

competitive balance or imbalance between teams. In addition there are numerous other factors relevant to the 

league.  The more competitive teams are, the more uncertain team outcomes become, and the greater the 

attendance and other audience may become.  These are components of the “uncertainty of outcomes 

hypothesis,” [2], [3]..  In short, predictability of outcomes is an anathema to financial success.  

Quantities most measured include means, variation, and end-of-season outcomes [4], [5], [6]. Even the 

Gini coefficient of the wealth within a country, and also of point spread applied to point totals has been 

considered [7], [8], as well as other measures [9], [10], [11]. Yet each sports league has its own peculiarities that 

may not transfer easily from one league to another, much less from one sport to another. A careful study of 

individual leagues is important.  Only with a highly accurate model of one league is it possible to understand 

how to adjust it to other.  Moreover, quantities used should be measurable. 

Many measures use notions of dispersion between different sports and the comparison via the RSA, or 

relative standard deviation [12].  Simulation models have been applied to different aspects of the analysis of 

sports leagues, often to make predictions [13], [14], including the effects of match attendance as a 

consequence changes in league structure such a applying a draft [15].  More recently, there are papers 

applying artificial intelligence primarily to predict game-day outcomes [16], [17]. These have met with 

some success, but lie beyond the scope of this work.  

 

III. Team Skills and Game Events 

Our population is all those playing football beyond the club level, semi-pro and pro. We assume that 

the skill level of each player is in the range (0,100), with the higher value indicating a greater skill.  Assume 

their skills to be normally distributed with mean 50 and standard deviation (50/3), placing almost every player in 

the assigned range.  We assume that most if not all professional players in the major football leagues have skills 

above at least one standard deviation above the mean, or have skill level greater than 66. That is, we assume the 

top professional teams get a rather high percentage of this group, and this percentage measures the overall team 

skill.   

A cursory, though not detailed inspection, show that the better teams in the EPL have a higher 

percentage of international players, indicating they have recruited into the broader worldwide pool of quality 

professional players.  This applies to the major European football leagues in countries with a higher Gini index, 

notably the EPL, but also the Bundesliga, La Liga, and others.  

Yet, a model based on relative skill levels of the teams begs the questions.  

1. How can correct skill levels for teams be derived? Though this may be theoretically difficult, it is possible 

to model.  One possibility is for players to be given a point value, ala chess, together with the manager, and 

this used to create the skill fractionations. 

2. In this context, what is the valuation for a manager in relative terms of that for the team?  Arguably, the 

manager is likely the most important component of the enterprise.  In fact, in the most recent 14-15 EPL 

season, one particular team jumped about 10% in points substantially by changing only the manager.  

 

In this paper, we use the final point standings in the league to estimate relative skill levels in the range 

[65,90] as discussed just above.  It is one thing to define the skills of particular teams by a single number, and 

this is what is done in most competitive balance models, but it is another to allow the skill level of a team to be 

given by a probability density.  The latter could be more accurate and would allow more variation in competitive 

outcomes.  Yet, even so, it becomes important to assign the means of these densities, and more complex to 

define models for the density, e.g. uniform, normal, or even beta.  This is discussed further in Section 4. 
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Events.  Each match is not so simple as a win or loss, or even win, loss, or tie. Additional factors are require 

folding it into realistically model an entire game, much less an entire season between teams.  We posit that each 

game between any two reasonably matched teams such as in the EPL or even the EPL and the Champions 

league consists of relatively routine play. During this which is the majority of the game, both teams play about 

the same.  In fact, a good semi-pro team could likely play even with the best EPL team even 90% of the time.  

This leads to the suggestion that match outcomes are determined by significant events during the match.  The 

questions becomes then, what are these events?  How many of them are there per game?  How is the winner of 

an individual event determined?  And how does the preponderance of events wins determine a win, tie, or loss 

of a game?  

 

Table 3.1 Significant Events 

Action D O

TOTAL 35 40

 Effective clearing of the ball 10

A good defensive save 7

An important tackle near the goal 5

A strategic foul 4

Goalee stopping a certain score 3

 Defending a corner 3

 The corner kick 1

 Strategic substitution 2 2

A good pass for a break away  7

 A strong give and go 7

An effective long pass 7

 Dribbling in traffic 4

Defensive miscue 4

 Blowing a certain shot on goal 4

 A great shot on goal 3

 Excellent centering of the ball on a corner 2  
 

First, we create a table of events, as observed by the author over many years of playing football and 

observing the game.  There is no claim to expertise, that being in the domain of the true experts.  In Table 3.1 

we give a guess of the base number of significant events per game.  In this table “D” means a defensive play, 

and “O” means an offensive play. The plays and their counts are debatable, but it does suggest that in ninety 

minutes of continuous play there are about 75 truly significant event, and rarely do these involve a goal scored.  

However, in many if not most cases, a score results from at least one and likely from a sequence of significant 

events.  This is well understood in American football and baseball.  

To mention one of these categories only if in deflection to objections, it is well known that the number 

of corner kicks leading directly to a goal is small, maybe about 3%, but the action of a goal kicks implies 

previous challenges to the goal, which in turn implies blown shots or good defensive plays. (See 

http://www.soccerbythenumbers.com/2011/05/why-goal-value-of-corners-is-almost.html) 

Using a dash of common sense, we suggest that for teams closely matched there are more significant 

events in a match. The reasoning may seem counter intuitive. For CB (almost equal) teams, each will play their 

passes and saves within normal abilities. For mismatched teams, the significant plays for the better team will 

increase slightly, those for the lesser team will often be countered.   The net result is there are fewer significant 

plays overall.  In addition, between greatly mismatched teams the stronger team will not play with the same 

intensity against the weaker team, also with the net result of fewer significant events. In our calculations for the 

EPL the numbers drop at most about 10% during a game.  Relative play is the nature of most contests, with 

expectation levels appending this.
1
  

Most scores are not dumb luck; therefore the upshot is for any good model, it is important to have a measure of 

significant plays.  We have so far addressed the first two of the questions, with the others awaiting discussion.  

Not considered directly in this paper are long term events such as ball control, continuous offensive pressure, 

overall team physical condition, and constancy of playing intensity, all difficult qualities to quantify.  

                                                           
1
 In analogy with the game of chess, the grand master can usually defeat the lesser opponent while reading 

Kant’s A Critique of Pure Reason, but not so when playing an evenly matched opponent.  Indeed, the master 

will not need as many significant moves, and the lesser player has fewer to make.  



Simulations for the EPL Using Competitive Balance Models 

DOI: 10.9790/6737-04023343                                      www.iosrjournals.org                                           36 | Page 

IV. The Competition Matrix 

Let , 1...iS i n   be the skill levels of the number of the league teams labeled 1...i n .  In our present 

situation 20n  . As noted skills are in the (0,100) range.  We define the competition matrix between teams of 

the various skill levels to be 

 (Team defeats Team ), 1ijc P i j i j n      

where (Team defeats Team )P i j  is the probability that Team i wins an event over Team j.  To avoid 

probabilistic difficulties, we assume (Team defeatsTeam ) 0.5P i i  , and the complementarity condition 

1 (Team defeats Team ) , 1ji ijc P i j c j i n       

Several possibilities for C are available.  One is a model first suggested by Bradley and Terry (Bradley and 

Terry, 1952).  It is essentially given by  

 , 1i
ij

i j

S
c i j n

S S
   


  

We will call this the basic harmonic competition matrix, or if you prefer the Bradley-Terry matrix [18]. It 

builds-in the complementarily condition.   With a redefinition of the skills vector via a logarithmic 

transformation, this is equivalent to the model used by Bradley and Terry, namely , 1
i

fi

S

ij SS

e
c i j n

e e
   


. 

These are the probabilities that Team i will succeed over Team j in a particular significant event during a game.   

Another model, and the one used in this study is the geometric competition matrix given by   

, 1 1,...,
2

i
ij

i j

S
c i j n

S S
     

The complementarity condition gives the lower half of C. This matrix tends ever so slightly to 

exaggerate the difference between teams at the extremes of skill ranges.  For nearly equal skills in our range the 

two matrices are imperceptibly close.  This ever so slight change does make a difference in outcomes.  Bear in 

mind, neither of these competition matrix models have a mathematical, statistical, theoretical corner upon the 

manner in which competition actually takes place, given the skills vector.  They are, however, relevant 

exigencies for the model.  In general, we could assume that each of the skill levels iS   is a random variable with 

of mean iS  pertaining to some probability density if .  In this case [19] 

       c | , 1 ,

t

ij i jP i j f t f s dsdt i j n



 

       

The complementarity condition is built-in. Note, as indicated above we may restrict the range of these densities 

to the range (0,100).  Here, it becomes possible to allow a fully general skill range over  ,  , with means 

in (0,100).  Assuming each iS  is normally distributed with specific standard deviations i  we can mimic the 

competition matrices we apply using the geometric formulation.  However, this produces quite a different 

model, and requires a considerable discussion. What we will call the event horizons in Section 6 is preserved but 

in another form. It is quite general and includes with the definition of suitable probability densities of the 

previous two examples. This model will be applied at another time.  

Mathematically, competition matrices are examples of positive matrices, in the sense of having positive entries, 

which have rather interesting properties.  To our knowledge this particular form for positive matrices has not 

been considered in the literature.  

 

V. The Data 
To set up our model, we now outline the data used.   It is substantially based on the relative skill levels 

of league teams.  The skill levels will be used to create a competition matrix.  With this matrix, criteria for 

numbers of significant events per game, and criteria for ties, we model a season’s play.   The data set includes 

the nine 06-07 through 14-15 seasons of the EPL averages of wins, ties, and losses, which incidentally exhibit a 

remarkable consistency.   One may posit that more seasons should be included.  However, every league sees 

trends over time, and to inaccurately weight a long past season with those more current could lead to unnatural 

outcomes.  

 There is a need to fully consider the nature of ties, a particularly troublesome issue.  We also need to 

understand how to model the team skill set, whether to use the averages from the most recent season, or to 
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modify it, the latter of team changes in the off-season.  In this study, we only consider final ranks over all teams, 

not necessarily individual ranks.  However, we do illustrate how the variously ranked teams fair with respect to 

final ranks over the 100 multiple seasons simulated. As it turns out the top ranked teams normally finish near the 

top, while the bottom ranked teams rarely rise even to the mid range of final standings. 

What we do not consider here, but could be incorporated into the model is the more specific nature of 

home and away game results.  However, we do accommodate the home and away differential in the criteria for 

win, lose, or tie for home and away games.   Using actual home-away percentages directly would be a next step. 

However, the idea here is toward a form of minimalism.  That is, we utilize the minimal data set to generate 

reasonable team differentials, which through the model generates excellent results. As noted previously, we are 

not performing game-day estimates about which teams win, lose, or tie, but the model could be used to that end.  

This could involve using far more data including an application of prospect theory which in this context would 

use results of recent matches [20], [21], [22]. See particularly the paper by Burgos.  Note, these papers take 

some interpretation to put into competitive sports, but the basic idea is that a win of this week’s game perhaps 

gives bump in confidence and by association team skills for the next game.  

 

Table 4.1 EPL Cumulative Averages 

Rank Ave wins Ave ties Ave Points Pct

1 26.89 6.33 87.00 0.76

2 24.78 7.89 82.22 0.72

3 22.56 8.11 75.78 0.66

4 20.56 10.00 71.67 0.63

5 18.56 9.89 65.56 0.58

6 17.22 10.56 62.22 0.55

7 16.00 10.33 58.33 0.51

8 14.67 10.00 54.00 0.47

9 13.44 10.78 51.11 0.45

10 13.44 8.33 48.67 0.43

11 11.56 11.78 46.44 0.41

12 11.56 10.33 45.00 0.39

13 10.89 10.33 43.00 0.38

14 10.44 10.11 41.44 0.36

15 10.44 9.00 40.33 0.35

16 8.78 11.89 38.22 0.34

17 9.00 10.11 37.11 0.33

18 8.67 9.22 35.22 0.31

19 7.67 9.67 32.67 0.29

20 5.78 9.56 26.89 0.24

Average 14.14 9.71 52.14 0.46

Hi 26.89 11.89 92.56 0.81

Lo 5.78 6.33 23.67 0.21

Standard Deviation 5.94 1.31 19.12 0.17

Ratio hi:lo 4.65 1.88 15.84 0.14

Ave top 3 24.74 7.44 81.67 0.72

Ave bottom 3 7.37 9.48 31.59 0.28  
 

For football, we used to some advantage the percentage of points.  This is the ratio of the number of 

points scored to the total points available, which in a 20-team league, each playing every other team twice gives 

a maximum number of points equal to thrice the number of games played (38), and this is 114.  In Table 4.1 we 

show the average results over the nine seasons considered, 06-07 to 14-15.  The spread is about 50 percentage 

points, normal in professional sports.  From the top of the graph, we see the percentages of the top ranked teams 

jump somewhat more than the percentages near the bottom of the ranks.  This also is generally the situation for 

individual seasons.  This is something of a point signature for the league.  For La Liga, where typically three 

teams dominate the game the percentages are somewhat higher, and in consequence the bottom-ranked teams 

have lower percentages. But the differentials for the top teams and bottom teams remain.  

With this in mind, we graph the percentages or points by rank.  Shown in Fig. 4.1, we have a striking 

visual of how teams perform by rank.  Note, it is this shape, a slightly reverse sigmoidal curve that remains 
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consistent over the seasons.  Now, we assign the skills values of the ranked teams in a linear scale from the 

number of points to the scale  from the range [26.89, 87.00] to the range [65,90].  Note, while we can 

proportionally scale this range, final results in the model will not change, but translating it to the left or right, 

e.g. to [60,85], does alter final results.  That said the ultimate skills vector for the ranked teams is given by S = 

[90, 88, 84.8, 82.7, 80.3, 79.1, 77.5, 75.5, 75.1, 73.9, 73.1, 72.3, 71.5, 71, 70.6, 69.8, 69, 68.6, 67.4, 65].  These 

are the values used to construct the geometric competition matrix.   The shape of this curve indicates a linear 

model for skills may not work well – and it does not.  
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Figure 4.1 EPL Rank vs Average Points 

 

If there were no ties, phenomenological modeling for soccer would be relatively simple, or a simplistic 

model could generate excellent results.  However, there are ties.  Looking at the average data over the past nine 

EPL seasons we see ties following a quadratic path as in Fig. 4.2.   It illustrates a drift upwards as the rank of the 

team decreases in overall skills.  Note the two peaks, one occurring for Team 11 and the other for Team 16.  In 

fact, both of these peaks are significantly higher from the mean using a z-test at the 0.01 level.  At least for 

Team 16 and sometimes for Team 17, there may well be the prospect of regulation that could account for this.  

By taking the maximum number of ties for teams 16 and 17, a rather nonstandard statistic, the significance from 

the z-test confirmed at every standard level. This particular observation must be built into any model, as has 

been in ours.  The correlation of ties with a linear regression model, while revealing the upward drift gives the 

rather low correlation of
2 0.1659R  ; thus the linear model  for ties should be discarded.  

What is also remarkable about this graph is that it was generated from averages over multiple seasons. 

To account for the concave shape of the curve, called the tie signature of the league, we argue that the more 

evenly balanced the teams are the more likely there is a tie.  The teams at either end of the rankings play fewer 

games with evenly matched teams, indicating the lower outcome of fewer ties.   Indeed, for the top ranked team, 

there were on average fewer ties at the 0.01 level.   This particular observation must be built into any model.  

The correlation of ties with a linear regression gives the rather low correlation of 
2 0.1659R  , thus a linear 

model for ties should be discarded.  
 

y = -0.0254x2 + 0.6236x + 6.8094

R² = 0.5145

y = 0.0901x + 8.7655

R² = 0.1659
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Figure 4.2 EPS Ties vs Rank 

VI. The model 
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With the skills levels determined, the competition matrix computed, and the number of events per game 

decided (about 77), we need now to construct the model for win, tie, or loss records for all teams.  This is 

achieved through a multiple trials type construction using a combination of integer and continuous arithmetic, 

together with a middle outcome range, wherein a tie is determined.   

Without venturing overly deep into details, we give the following model description.  

1. For Team i and Team j, with skills i jS S  we have a probability of relative success, ijc . Normally, 

0.5 1ijc  .  

2. The next steps now pertain to a particular event within a match.  For each event   

a. Compute uniformly distributed random numbers in [0,1].  

b. For each number x determine whether it is less or greater than ijc  

c. If less than ijc add one to success counter; if greater add one to the non-success counter.  Actually, we only 

need the success counter, as the other is complementary with respect to the number of events.   

3. Our use of random values requires twelve significant places of accuracy.  With a greater granularity of such 

numbers, different outcomes are predicted.  With only four digits, vastly different outcomes are predicted, 

in so far as statistics are concerned. 

4. When all events have been exhausted, we award a win to Team i if the counter exceeds a certain value and a 

win to Team j if the counter is greater than another value.  If the number of wins is between the two values, 

a tie to both teams is awarded.  These four values are termed event horizons.  

 

Moreover, event horizons are needed to differentiate home and away games, given that team skills are 

constant.  (See Section 7 for further comments on this.)  It is one thing to model ties and even wins based on 

historical data.  Predicted outcomes will be as expected. It is another to generate fundamental assumptions 

which apply to all matches irrespective of such data beyond an assessment of skills.  Many other simulations 

select probability ranges for the random numbers (in [0,1]) to describe win, tie, or loss, making predictions 

easier but less natural. Depending on whether the game is away or at home, the bandwidths and positions are 

differentiated.  The skills remain the same, as is certainly the case.  Simply put, when the numbers of significant 

events are approximately equal according to home or away game bandwidths, there is a higher likelihood of a 

tie.  As a note, for a sport without ties, the bandwidths are collapsed to zero, the event horizons adjusted for the 

sport and league. 

As is evident, we have converted home advantage to positions and widths of bandwidths.  Now, with 

this model, we have yet to distinguish between relative skills.  In generating this model, it was determined there 

is no relative combination of skills, number of events, and bandwidth with which a typical season could be 

modeled. To this end we modify, according to the number of relative skills, the numbers of significant events.  

This is achieved only upon ijc  using the factor min ,
ij ji

ji ij

c c

c c

 
  
 

, and the model is complete. It is the nature of 

the tie that makes this variation of a multiple trials experiment both relevant and reasonable.  

In a sense, the introduction of significant events is similar to assigning to each term of the competition matrix as 

probability density with given mean ijc .  The nature of the density requires some further research. This is 

alternative approach not addressed here.  

The expression for this model could possible take the more traditional form as 

 ( , , ) and ( , , )ij ij ij wij ij ij ij tijw f c g E t g c h E    

where these quantities give the expected number of wins and ties for matches between Team i and Team j. Here 

ijg and ijh  are vectors codifying additional parameters about the teams, and the terms wijE and tijE are 

stochastic factors.  The functions f and g are appropriate to the model.  However the model is designed, in 

simulations there is always a randomly generated number or many used to determine the stochastic factors.  The 

steps 1, 2, and 3 above detail the construction of the functions.  Often, the stochastic terms are introduced as 

additive effects to an expectation function. Thus for example, we commonly see expressions such 

as ( , )ij ij ij wijw f c g E  and ( , )ij ij ij tijt g c h E   

 

As discussed previously, all these factors are relevant, reasonable, and significant. As is apparent, it is 

the nature of a tie that complicates the model and the computations. Let us note that because of the large number 

of events it would have been possible to use the normal approximations to the binomial distributions created and 

bi-pass the events scenario.  However, the combination of integer and continuous arithmetic creates an ever so 
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slight additional randomness, upon which the normal season turns.   Another sport to which this model applies is 

tennis.  Each game in a set is a sequence of multiple trials, with “home” and “away” governed by which player 

has the serve. When a set reaches a tie at 6-6, there is a continuation, after which a slightly different model is 

employed in order the winner be determined.  The key notion here is that winning a tennis match is not simply 

determined by the flip of an (unfair) coin, but is a sequence of a significant number of repeated trials (each 

point, and then each set) during which ties must be reckoned.   

Baseball is a variant, also denying ties, enjoys different considerations.  Models for both sports are 

under development. In both, an application of prospect theory seems to help predict outcomes.   In football as 

discussed here, there must be in the case of major games the additional requirement of no tie, and this 

necessitates the imposition of further conditions, specifically that scores result from winning a sequence of 

significant events.  

 

VII. Results 
In this section, we describe the winning records, the collection of ties, and final rankings compared to 

initial rankings, and their related statistics.  With the parameters for skills, the appropriate completion matrix, 

the bands for ties (home and away), we ran the program (written in Maple) for 100 seasons several times.  The 

average number of points over these runs was 87.52 with a standard deviation of 2.15. This is comparable to 

actual records over the 06-07 to 14-15 seasons which were respectively 87.33 and 3.02.  The implication is the 

model is slightly more stable in terms of variance, though we are comparing 100 seasons with just nine.   This 

breaks down to the league winner having a average of 26.98 wins and 6.58 ties in the model. This compares 

with the actual data of 26.89 wins with and 6.33 ties.   

In computing a 
2  test with the actual average season W-D-L records over nine seasons under 

consideration with the average simulated season, we are concluded to reject the independence null hypothesis 

between the seasons at all levels, even the very smallest.  This is an indicator that the model functions properly.   

 

Table 7.1 Ties by Season and Original Rank 

Season 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 3 6 5 6 8 2 4 5 8 4 4 5 5 5 5 5 2 7 7 4

2 11 6 10 11 6 9 15 9 12 6 10 12 8 5 10 11 13 14 8 12

3 11 4 9 9 9 7 13 12 15 6 10 11 10 10 6 14 6 11 11 8

4 8 9 9 10 7 6 15 6 8 12 9 9 10 12 8 7 10 10 10 11

5 6 9 8 11 10 9 11 11 15 7 8 6 12 6 9 10 8 9 5 8

6 8 9 13 11 5 10 9 8 5 13 7 13 7 5 11 12 8 5 11 6

7 8 7 10 9 10 6 6 9 7 7 6 12 4 11 6 10 9 9 5 5

8 5 4 8 10 6 10 10 7 12 6 7 10 11 8 8 11 10 7 6 6

9 7 6 6 8 7 11 8 10 10 10 9 10 8 7 10 12 4 10 8 7

10 7 7 5 5 7 9 6 9 7 13 7 9 14 11 4 6 7 17 8 10

11 7 10 7 12 8 9 11 9 9 13 11 10 17 12 11 7 11 12 10 6

12 8 6 8 14 8 10 12 9 5 14 8 9 15 12 11 11 11 6 11 6

13 2 4 4 7 8 11 9 10 5 6 7 7 9 3 11 7 5 6 7 2

14 6 8 12 12 7 8 9 7 12 10 7 11 11 11 10 10 8 7 7 9

15 7 12 12 8 12 12 10 9 11 11 12 8 13 11 8 18 9 10 6 5

Original Rank

 
 

Next, we come to the problem of ties, and just how well the model mimics the actual data.  In Table 7.1 

we show numbers of ties where for just the first fifteen seasons by the teams in order of their original rank. (The 

full table has one hundred lines.)  However, all conclusions are made from the full table.  

The average number of ties for the given rank over all seasons is [7.08, 7.81, 8.3, 9.21, 8.66, 8.88, 9.29, 9.19, 

9.35, 9.57, 9.46, 9.36, 9.49, 9.13, 9.05, 8.94, 9.23, 9.19, 8.64, 7.81].  This information is illustrated in Fig. 7.1. It 

exhibits the same type of quadratic trend as we saw in Fig. 4.2 for the actual data. This confirms the notion 

about the model that the more equal teams are, the more likely a tie.   
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y = -0.0189x2 + 0.4429x + 6.9835
R² = 0.8464
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Figure 7.1 Average Ties by Original Rank 

 

The one unsettling aspect is that the average number of ties is a bit lower for the model than actual 

data, 8.91 vs. 9.71.  The special peaks notices for actual data are not there as well.  However, our model did not 

account for that most interesting phenomenon.  It may be of some interest to note the winning league team had 

overall the lowest number of ties, about seven. 

 

Who wins and who loses?  The final question we take up is who wins the championship?  Is it the first ranked 

team all the time, or just a lot of the time?  And which teams are relegated, at least most of the time?  Again, for 

the actual data we know who has won each year, but for the simulated model, we need to count victories for 

each ranked team, and what place they took in the final standing – in total.  Again, we dispense with the 

displaying the full table, allowing only the final table of rankings.  So, we ask the question how many times over 

all the seasons does a ranked three team win the championship?  Or how many of the lower three ranked teams 

are destined to be relegated at the end of the season.  While Table 7.2 is given in frequencies, they automatically 

convert to probabilities, simply dividing by 100.  For example, it is evident that the first ranked team placed 

third nine times over the 100 seasons, and the last ranked team never placed higher than 10
th

 overall (twice). 

There is a great difference in the probabilities of outcome for teams in various ranks. Reality suggests skill 

levels of teams change through out the season.  This will directly affect the competition matrix.  Yet, how to 

make these changes is subject to conjecture.  In the current model, the competition matrix can be changed at any 

time during the season based presumably on skills changes.  Perhaps a correction should be introduced at the 

mid season and the three quarter season mark, times when teams can be reviewed on the one hand and get very 

serious about the season conclusion or simply begin their surrender.   

The law of constancy: From this table of frequencies we can compute probabilities over many possibilities.  

For example, the probability that a top-half ranked team remain top-half ranked is 0.86, and those in the bottom 

half of rankings remain so is also 0.86.  In fact this must be so by construction.  The probability that top three 

ranked teams remain so is 0.81, while the probability that the bottom three teams remain so is only 0.57.  

Indeed, it seems easier for lower ranked teams to break out.  Top teams on the other hand enjoy the constancy of 

their final position remarkably well.   Lower ranked teams on the other hand suffer a relative constancy toward 

the bottom.  Midrange teams have their own law of constancy, being somewhat constrained to remain in the 

 

Table 7.2 Numbers of Final vs Original Ranks 

Final Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 61 18 11 8 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 27 33 25 11 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

3 9 26 33 13 13 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0

4 2 16 16 36 9 11 6 2 2 0 0 0 0 0 0 0 0 0 0 0

5 0 3 9 10 36 16 16 5 2 2 1 0 0 0 0 0 0 0 0 0

6 0 2 3 16 17 19 13 15 5 2 5 2 1 0 0 0 0 0 0 0

7 1 2 1 3 12 23 17 18 11 7 1 2 1 0 1 0 0 0 0 0

8 0 0 0 0 5 9 19 17 10 12 6 6 2 7 2 4 1 0 0 0

9 0 0 0 2 5 9 7 7 14 9 12 6 12 3 5 3 2 4 0 0

10 0 0 1 1 0 4 7 8 14 14 10 7 7 11 3 2 6 1 2 2

11 0 0 0 0 1 3 3 9 11 7 10 12 12 12 7 4 2 4 3 0

12 0 0 1 0 1 0 6 8 7 16 9 12 7 7 10 10 3 3 0 0

13 0 0 0 0 0 0 0 4 2 6 9 18 12 8 7 11 10 5 7 1

14 0 0 0 0 0 0 4 2 4 6 6 9 6 7 19 10 7 9 9 2

15 0 0 0 0 0 0 0 0 4 5 9 7 12 12 9 11 10 8 9 4

16 0 0 0 0 0 0 0 2 6 4 12 6 5 10 10 9 7 16 9 4

17 0 0 0 0 0 0 0 0 4 3 4 8 8 11 10 12 12 14 8 6

18 0 0 0 0 0 0 0 2 1 5 3 3 6 7 7 10 20 16 11 9

19 0 0 0 0 0 0 0 0 1 2 3 1 8 3 8 9 16 12 19 18

20 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 4 8 23 54

Original Rank
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middle.  Yet,  the exceptions make the sports enterprise interesting and sustaining.  For the very bottom ranked 

teams, it can be argued that relegation merely serves to supply new fodder for the established higher quality 

teams.  This is not to say relegation is without merit. In Table 7.3 we consider only a few possibilities, including 

those just mentioned, of league outcomes and their contingent probabilities.  

 

Table 7.3 Probabilities of Select Outcomes 

Probability that Value

All three bottom teams are relagated 0.57

Both  two bottom teams are relegated 0.67

The bottom team is relagated 0.81

Teams orginally ranked 8-12 remain so 0.51

Teams orginally ranked 6-14 remain so 0.84

Team ranked team 6th drops at least one rank 0.43

Teams ranks top three remain so ranked 0.81

Teams not ranked first win the championship 0.39  
 

Clearly, teams originally ranked in the broad middle range tend to stay there with a high probability.  

Naturally, as these frequencies are computed from a simulation, the second decimal point above is suspect as it 

applies to the actual football world. From this table, the interested reader can compute probabilities for any 

virtually any hypothetical.  One item apparent is that bottom-ranked teams stay there.  If not for the loyalty of 

fans, it is likely the EPL would have to resort to a draft to give more competitive balance to the teams, acceding 

to the uncertainty of outcomes hypothesis.  This can be modeled by simply changing the range on the skills 

vector.  For example, changing the skills range from [65,90] as we used to [70,90], with all other factors 

constant, a considerable change in final standings would result.  

There is a great difference between probabilities of outcome for teams in various ranks. This assumes 

skill levels of teams change during the season, and this directly affects the competition matrix.  Yet, how to 

make these changes is a matter of conjecture, and conjectures may vary widely.  Nonetheless, in the current 

model, the competition matrix can be changed at any time during the season based presumably on skills 

changes.  Perhaps a correction should be introduced at the mid season and the three-quarter season mark, times 

when teams review past performance and get very serious about winning and the season’s conclusion.   

Other data could be reported such as to address the home-away W-D-L records over the 100 seasons 

between Team 2 and Team 12, with implications toward creating probabilities of a win, tie, or loss on game day.    

Finally note all row and column sums of this frequency matrix sum to one hundred.  Therefore, dividing all 

entries by 100, the matrix becomes a doubly stochastic matrix and in fact a transition matrix. This permits the 

consideration of probabilities of multiple seasons based on the previous seasons.  It is not entirely clear how to 

interpret these possibilities, but they are available for consideration. 

 

VIII. Conclusions 
The results of the previous section indicate the present model produces remarkably accurate estimates 

of actual EPL seasons.  It even produces seasons with relatively low point totals, similar to actual but relatively 

uncommon EPL seasons.  Our competitive balance model seems to reveal interesting results, particularly about 

final placement rankings.  What is significant is that a generalized model is not possible applying across leagues 

or sports, without league specific data.  Namely, it is important to have the point and ties profile signatures for 

the league considered.   As well, it is important, in this model event profiles and critically important an estimate 

of the numbers of significant events during a single match.  The event horizons were selected to accommodate 

the tie profile for the home-away exigencies.   The number of events was a guess.  But all the factors, skills, 

event horizons, events, games per season, home-away factors all co-mingle in highly nonlinear relationships. 

Using the suitable competition matrix is also important.  

The approach taken was foundational using parameters that are reasonable, (probably) computable, 

based on real data, and parsimonious. However, as we’ve noted along the way, the model has flaws directly 

connected with actual season play. Here are a few questions, some reflective on earlier work, and comments for 

future work.   
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1. What is the probability that a team looking at relegation at the ¾ season point actually are relegated. This 

could affect skills levels and hence probability levels.  

2. Should team records at the half season be marked so to recalibrate the relative skills for the remainder of the 

season? 

3. Is it important to consider seasonal trends, perhaps moving averages over multiple seasons?   

4. As most scores involve anywhere from one to several events won in sequence, should the model include the 

presence of consecutive runs of winning events?  This would be a precursor to estimating numbers of game 

goals [16].  

5. Should adjustment of skills of game-day be based on betting odds [23]?  Possibly, but the bookmakers are 

not necessarily that accurate. 

 

For some of these questions, an enhanced model can be devised, inserted and better results, certainly 

more stable results obtained.  However, doing this creates a risk of seeming to “cook” the books.  There is also 

the matter of making reasonable assumptions about the relative importance of a host of variables particularly 

when including game-day considerations. Historical factors may yield more reliable results. Learning methods 

from AI such as random forests may help to sort the relative importance of factors.  The code, in Maple, is 

freely available upon request.  
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