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Abstract: The performance of multiplication is crucial for multimedia applications such as 3D graphics and 

signal processing systems which depend on extensive numbers of multiplications. Previously reported 

multiplication algorithms mainly focus on rapidly reducing the partial products rows down to final sums and 

carries used for the final accumulation. These techniques mostly rely on circuit optimization and minimization 

of the critical paths. 
In this paper, an algorithm to achieve fast multiplication in two’s complement representation is 

presented. Indeed, our approach focuses on reducing the number of partial product rows. In turn, this directly 

influences the speed of the multiplication, even before applying partial products reduction techniques. Fewer 

partial products rows are produced, thereby lowering the overall operation time. This results in a true diamond-

shape for the partial product tree which is more efficient in terms of implementation. 

Keywords:—  MBE, PPR, PPRG, FPGA. 

 

I. INTRODUCTION 
The performance of 3D graphics and signal processing systems strongly depends on the performance of 

multiplications because these applications need to support highly multiplication intensive operations. Therefore, 

there has been much work on advanced multiplication algorithms and designs [1, 22, 3, 23, 18, 14, 13, 6, 7, 16, 

20, 24, 12]. 
There are three major steps to any multiplication. In the first step, the partial products are generated. In 

the second step, the partial products are reduced to one row of final sums and one row of carries. In the third 

step, the final sums and carries are added to generate the result. Most of the above mentioned approaches 

employ the Modified Booth Encoding (MBE) approach [6, 7, 13, 24, 4] for the first step because of its ability to 

cut the number of partial products rows in half. They then select some variation of any one of partial products 

reduction schemes such as the Wallace trees [22, 6] or the compressor trees [16, 13, 18, 14] in the second step to 

steeply reduce the number of partial product rows to the final two (sums and carries). In the third step, they use 

some kind of advanced adder approach such as carry-lookahead or carry-select adders [5, 17, 11] to add the final 

two rows, resulting in the final product. The main focus of recent multiplier papers [7, 16, 20, 24,4, 12] has been 

on rapidly reducing the partial product rows by using some kind of circuit optimization and identifying the 

critical paths and signal races. In other words, the goals have been to optimize the second step of the 

multiplication described above. 
However, in this paper, we will focus on the first step which consists in forming the partial product 

array and we will strive to design a multiplication algorithm which will produce fewer partial product rows. By 

having fewer partial product rows, the reduction tree can be smaller in size and faster in speed. It should also be 

noted that 8 or16-bit words are the most commonly used word sizes in the kernels of most multimedia 

applications [19] and that the implementation of our overall algorithm is particularly well suited to such word 

sizes. In the next section, the conventional multiplication method is described in detail with an emphasis on its 

weaknesses. In section iii, a step-by-step procedure to prevent the adverse effects of some conventional 

multiplication algorithms is presented. In section iv, the effectiveness and usage of our method is presented by 

showing a detailed evaluation. 

 

II.          Multiplication Algorithms 

There is no doubt that MBE is efficient when it comes to reducing the partial products. However, it is 

important to note that there are two unavoidable consequences when using MBE: sign extension prevention and 

negative encoding. The combination of these two unavoidable consequences results in the formation of one 

additional partial product row and of course, this additional partial product row requires more hardware but 

more importantly time  
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A. Modified Booth Encoding and the Overhead of Negative Encodings 

This grouping of the multiplier bits of MBE is shown in Figure 1 and it is based on a window size of 3 

bits and astride of 2. The multiplier (Y) is segmented into groups of three bits (y2i+1, y2i, y2i−1) and each such 

group of bits is associated with its own partial product row by using Table 1 [15]. In this grouping, y−1 = 0.By 

applying this encoding, the number of partial product rows to be accumulated is reduced from n to n/2. For 

example, for an 8 × 8 multiplication, a multiplier without MBE will generate eight partial product rows 

(because there is one partial product row for each bit of the multiplier).However, with MBE, only n/2 (= 4) 
partial products rows are generated as shown in the example of Figure 2.However, there are actually n/2 + 1 

partial product rows anther than n/2, because of the last neg signal (neg3 in Figure2).  

  The neg signals (neg0, neg1, neg2, and neg3) are needed because MBE may generate a negative 

encoding ((-1) times the multiplicand or (-2) times the multiplicand).Consequently, one additional carry save 

adding stage is needed to perform the reduction. This is the overhead of implementing the negative encodings of 

MBE. 

 
Figure 1: Multiplier bits grouping according to modified booth encoding for 8-bit input 

 

Table 1: Modified Booth Encoding (radix-4) 
 
Y2i+1 

 
Y2i 

 
Y2i-1 

 
Generated partial 

products 

0 0 0 0×X 

0 0 1 1×X 

0 1 0 1×X 

0 1 1 2×X 

1 0 0 (-2)×X 

1 0 1 (-1)×X 

1 1 0 (-1)×X 

1 1 1 0×X 

 

B.    Sign Extension and its Prevention 
In signed multiplication, the sign bit of a partial product row would have to be extended all the way to 

the MSB position which would require the sign bit to drive that many output loads (each bit position until the 

MSB should have the same value as the sign). This makes the partial product rows unequal in length as shown 

in Figure : the first row spans 16 bits (pp00 to the leftmost pp80), the second row 14 bits (pp01 to the leftmost 

pp81), the third row 12bits (pp02 to the leftmost pp82), and the fourth row 10 bits(pp03 to the leftmost pp83). 

The sign extension prevention method shown in figure3.and arrives a newly formed partial product rows as in 

figure4[10]where the sign extension has been removed. We use this structure as the basis structure for our 

multiplier architecture. 

 
Figure 2. The Array of Partial Products for Signed Multiplication with MBE 

 
Figure. 3: Application of sign extension prevention measure on the partial product array of 8×8 

multiplier 
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    C. One Additional Partial Product Row 

However, there is still the problem of having the last neg forming one additional partial product row 

(neg3 in Figure3) and this causes another carry save adder delay in order to generate the sums and carries before 

the final accumulation. This is because in any case, one more partial product means one additional 3-2 

reduction. For example, Figure 4(a)[10] shows a 8-input reduction (16 bit × 16 bit multiplication for our 

architecture) using 4-2 compressors. If we have to reduce 9 inputs (16 bit × 16 bit multiplication for the 

conventional architecture), one additional carry save adder is required as in Figure 4(b)[10].  
. 

III .    Stopping the Extra Partial Product Row 
Therefore, our aim is to remove the last neg signal. This would prevent the extra partial product row, 

and thus save the time of one additional carry save adding stage and the hardware required for the additional 

carry save adding. We noticed that if we could somehow produce the two’s complement of the multiplicand 

while the other partial products were produced, there would be no need for the last neg because this neg signal 

would have already been applied when generating the two’s complement of the multiplicand. 

Therefore, we “only” need to find a faster method to calculate the two’s complement of a binary number. 

 

 A .   A Quick Method to Find Two’s Complements 

Our method is an extension of well-known algorithm that two’s complementation complements all the 

bits after the rightmost “1” in the word but keeps the other bits as they are. The two’s complement of a binary 

number 0010102(1010) is 1101102 (−1010). For this number, the right most “1” happens in bit position 1 (the 

check mark position in Figure 4 ).  

 

 
Figure 4:Two Complement Conversion Example 

 
Therefore, values in bit positions 2 to5 can simply be complemented while values in bit positions0 and 1 are 

kept as they were. Therefore, two’s complementation now comes down to finding the conversion signals that are 

used for selectively complementing some of the input bits. If the conversion signal at any position is “0” (the 

crosses in Figure 4), then the value is kept as it is and if the conversion signal is “1”(the checks in Figure 4), 

then the value is complemented. The conversion signals after the rightmost “1” are always1. They are 0 

otherwise. Once a lower order bit has been detected to be a “1,” the conversion signals for the higher order bits 

to the left of that bit position should all be “1.”However, this searching for the rightmost “1” could as time 

consuming as rippling a carry through to the MSB since the previous bits information must be transferred to the 

MSB. Therefore, we must find a method to expedite this detection of the rightmost “1.”As we will see, this 

search for the rightmost “1” can be achieved in logarithmic time using a binary search tree-like structure. We 

first find the conversion signals for a 2-bitgroup by grouping two consecutive bits (the grouping always starts 

from the LSB) from the input and finds the conversion signals in each group as shown in Figure 6(a)[10]. Then 
we find the conversion signals for a 4-bit group (formed by two consecutive 2-bit groups). Then we find the 

conversion 

Signals for a 8-bit group (formed by two consecutive 4-bitgroup). This divide-and-conquer approach is 

pursued until the whole input has been covered. When grouping two 2n-bits groups, the leftmost conversion 

signals from the right group contain the accumulative information of its group about whether a “1” ever 

appeared in any bit position of its group, so that a conversion signal should force all the conversion signals from 

the left group all the way to the “1” if it is itself is a “1.” For instance, as shown in Figure 6(b)[10], if CS1 (the 

leftmost conversion signal from the right group) = “1,” the conversion signals from the left group (CS2 and 

CS3) should be forced to a“1,” regardless of their previous values. If CS1 = “0,” nothing happens to the 

conversion signals from the left group. This variable control is shown with a dashed arrow. Likewise,CS5 may 

affect conversion signals CS6 and CS7.The same goes for CS3’ which may affect the conversion signals (CS7’, 
CS6’, CS5’, and CS4’).The inputs to the 2-bit group are bits from the original binary number. However, the 

inputs to the next level groups are conversion signals from the previous level. For instance, the inputs to the 4-

bit group are the conversion signals generated from two 2-bit groups. Therefore, from the second level (4-bit 

grouping) on, the conversion signals are scanned in order to find the rightmost “1.” One possible 
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implementation of our algorithm is shown in Figure7 (a). Figure 7(b)[10] shows another version of the design 

using NAND, NOR, and inverter. Once we have the complete conversion signals, these signals are shifted left 1 

bit and EXOR-ed with the input to create the two’s complement of the input. One complete example of two’s 

complementation of “001010002”is shown in Figure 8[10].  Our approach is more general and shows better 

adaptability to any word size. 

 

 
Figure 5: Two’s complement computation 

A. Putting it all together 

By applying the method we just described for two’s complementation, the last partial product row (in 

Figure 3) is correctly generated without the last neg(neg3 in Figure 3).Now, the multiplication can have a 

smaller critical path. This avoids having to include one extra carry saving adding stage. It also reduces the time 

to find the product and saves the hardware corresponding to the carry saving adding stage. Forming a truly 

parallelogram-shaped partial product array after removing the last neg requires undergoing the following 

steps: 

Step a: Replace the last partial product row and neg3 in Figure 3 with signals s9 ∼s0 as shown in Figure 6. 
Step b: Replace the second to the last partial product row as in Figure 6. 

 
Figure 6: Replacing the last row and the Last neg with signals s9 -s0 

 

Step c: Finally, the MSB of the last row can be complemented 

(s9) and the “1” directly above it can be removed as shown in Figure 7. 

 
Figure 7:  Partial Products After Removing the last neg 

 

As can be seen, the critical path column with n /2 +1 elements (6th bit position of Figure 3 (n−2)) now 

have only n/2 elements as shown in Figure 7(the neg3 is no longer there). This directly improves the speed of 

the multiplication. The multiplier architecture to generate the partial products is shown in Figure. The only 

Difference between our architecture and the conventional multiplier architectures is that for the last partial 

product row, our architecture has no partial product generation but partial product selection with a two’s 

complement unit. The 3-5 decoder select the correct value from 5 possible inputs (2×X, 1×X, 0, -1×X,-2×X) 
which are either coming from the two’s complement logic or the multiplicand itself and input into the row of 5-

1selectors. Unlike the other rows which use PPRG (Partial Product Row Generator), the two’s complement logic 

does not have to wait for MBE to finish. Two’s complementation is performed in parallel with MBE and the 3-5 

decoders. 
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Figure 8. Proposed Multiplier Architecture 

 

IV .       Performance Evaluation and Results Discussion 
The performance of our multiplier architecture clearly depends on the speed of the two’s 

complementation step. If we can generate the last partial product row of our multiplier architecture within the 

exact time that the other partial product rows are generated, the performance will be improved as we have 

predicted because of the removal of the additional partial product row. Therefore, in this section, we evaluate 

the performance of our two’s complement logic by comparing it to the delay of generating other partial 

products. Then, we investigate the overall impact (in terms of speed) of using our multiplier architecture as 

compared to previous methods. 

The main tools required for this project is MODELSIM 6.4, XILINX 10.1i.By Using these tools we 
perform simulation and synthesis and get the simulation results and synthesis reports from a two’s complement 

multiplier ppg module, and compare the ppg generation results with our method listed in Table 2. 

Our proposed multiplier has generated partial product generation with estimated delay of 9.5 ns, 9.5ns, 

9.5ns with corresponding 8×8, 16×16, 32×32 bit multipliers respectively. But the actual critical path delay for 

the partial product generation in proposed multiplier is 9.321ns; this one is obtained from synthesis report of ppg 

module. The figure shows the generation of partial product in our proposed multiplier. Hence we concluded here 

that our approach is reducing computation time in our proposed multiplier. The estimated critical path delay is 

slightly high when compared to actual critical path delay for generation of partial product in our method. This 

leads to reduce the maximum combinational path delay of our proposed multiplier. 

 
Table 2: Estimated Critical Path Delay for the Partial Product Generation for various multipliers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimated Critical Path Delay for the Partial Product 

Generation 

 (in Nano seconds) 

Technique 8×8 16×16 32×32 

Standard multiplier 

(any row) (Gen 

MBE,Gen PPs) 

9.8 9.8 9.8 

Standard multiplier 

(first row) (Gen MBE 

+PPs) 

4.8 4.8 4.8 

Proposed multiplier 

(Gen PPs +lastneg) 

9.5 9.5 9.5 

Two’s complement  

(4× 1 mux +two’s 

complement tree) 

11.9 13.3 15.1 
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Figure  9 : simulation results for a partial product generation 

The developed project is simulated and verified their functionality. Once the functional verification is 
done, the RTL model is taken to the synthesis process using the Xilinx ISE tool. In synthesis process, the RTL 

model will be converted to the gate level net list mapped to a specific technology library. Here in this Spartan 

3E family, many different devices were available in the Xilinx ISE tool. In order to synthesis this design the 

device named as “XC3S500E” has been chosen and the package as “FG320” with the device speed such as “-4”. 

There are four Partial product rows km1, km2, km3, km4 are generated. And simulation results for the top 

module show in figure 10. 

We are compared our proposed multiplier with arry multiplier, booth’s multiplier and conventional 

Vedic multiplier. From the table we concluded that our proposed multiplier is an efficient one among all. The 

Maximum combinational path delays are given table 3. 

 

 
Figure 10:  simulation results for top module 

 

Table 3:  Comparison of Maximum combinational Path  Delay between different multipliers 

 

 

 

 

 

 

 

 

 

.The RTL (Register Transfer Logic) can be viewed as black box after synthesize of design is made. It shows the 

inputs and outputs of the system. By double-clicking on the diagram we  

can see gates, flip-flops and MUX 
 

 
Figure 11 : RTL schematic diagram for test module 

 

Maximum Combinational Path Delay for Different  

Multipliers 

(in Nano seconds) 

Array 

Multiplier 

Booth’s 

Multiplier 

Conventional 

Vedic 

Multiplier 

Proposed 

Multiplier 

32.01 

 

29.549 

 

23.679 

 

21.995 
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The figure shows the technical schematic of top module,  

 

 

 

 

 

 

 

 

 

Figure 12 : technology schematic diagram for ppg module 

 

which consists of iob’s, lookup tables, functional blocks and flip-flops. 

 

 
Figure 13 : Hardware implementation 

 
The above FPGA implementation shows the multiplication operation, i.e. the multiplier value is 1 & 

the multiplicand value is 127. Hence the output lights glow from 1 to 7 continuously, which indicates the output 

value is 127 

 
V .     Conclusions 

In this project an algorithm is presented to reduce from [n/2] +1 to [n /2] the number of partial product 

rows generated during the first step of a multiplication algorithm. By doing so, the structure of the partial 

product array becomes more regular and easier to implement. Even more importantly, the product is found faster. 

This can be achieved using less hardware. A detailed and step-by-step approach to prevent the occurrence of the 

additional row is shown. The proposed multiplication method is particularly efficient when executing the 

multiplications of the kernels of most common multimedia applications which are based on 8 to 16-bit operands 

& implemented by using Spartan 3(XC3S400) FPGA. 

  Compared our approach with a recent proposal with the same aim, considering results using a widely 

used industrial synthesis tool and concluded that our approach may improve both the performance and area 

requirements of square multiplier designs. The proposed approach also applies with small modifications to 

rectangular and to general radix-B Modified Booth Encoding multipliers. 
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