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Abstract 
In this work, the well-known Kramers–Kronig (K-K) relation is reviewed in the context of the frequency domain 

response function of a linear and causal medium. K-K relation is a bidirectional mathematical expression which 

relates the real and imaginary parts of a given complex function analytic in the upper half plane. The Fourier 

integral can be applied to the complete frequency response of a physical system to yield a causal time-domain 

impulse response. The frequency response of the system being invariant is described under the Hilbert 

transform. One of the pairs of the K-K relation expresses the real part of a complex function in terms of an 
infinite integral involving the imaginary part. The resulting real part of the K-K is a singular function and 

requires a careful evaluation. Fast Fourier transformation (FFT) algorithm was used to evaluate the real part 

of the K-K relation which can be applied in a realistic semiconductor optical spectra. Matlab program was used 

to implement the resulting FFT and its inverse transform algorithms. The classical optical dielectric function is 

discussed to illustrate the algorithm at different normalised frequencies. Results obtained exhibited a good 

agreement in the oscillator example, though the imaginary path of the oscillator spectrum may require some 

paddings in the FFT treatment to fit correctly the tail of the spectrum. However, the major artefacts and basic 

physics in our results are preserved, making it applicable in real materials spectroscopic methods. 

Keywords: K-K relation, FFT, Oscillator model, Optical spectroscopy, Hilbert transform 

 

I. Introduction 
K-K relations refers to a bidirectional mathematical expression which relates the real and imaginary 

parts of a given complex function that is analytic in the upper half plane [1,2,3]. These relations are special 

functions coined from the generalised Hilbert transform. It is used to calculate the real part from the imaginary 

part (or vice versa) of a response function in a physical system. It is pertinent to know that any system whose 

present response does not depend on future values of the input is called a causal system and such system is 

practically realizable. The analyticity of a causal system obeys the complex mathematical rule [2] 
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where the variables 
1

 and 
2

  are real parameters, the symbol  is the causal parameter. This creates 

dispersions relations, which are supposedly one of the few important topics where the causality paradigm plays 

an important role [4] and have a wide application in elasto-dynamics and electromagnetism [3]. If we suppose 

that this function is analytic in the upper half plane of   and vanishes as the absolute value of the response 

parameter      . Then the K-K relations implies the following for an example [1, 2, 5] 
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where symbol p appearing in equation (2) and (3) represent the Cauchy principal value. The real and imaginary 

part of such a function are not independent, and the full function can be reconstructed given just one of its parts 

[1,6] In principle, application of the Fourier integral to the complete frequency response of any physical network 

should always yield a causal time domain impulse response. In practice, the frequency response information is 
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often complete on a discrete- frequency point and can contain some measurement errors. K-K formalism can be 

applied to the response functions of linear systems such as signal processing [1]. For an example, it can be used 

to explain the relationship between the absorption and refractive index of transparent media. K-K relation 
implies that observing the dissipative response of a system is sufficient to determine its phase response and vice 

versa. The integral running from the range -∞ to +∞ implies that we know the response at negative frequencies. 

In most systems, the positive frequency response determines the negative frequency response because )(  is 

the Fourier transform of a real quantity )( tt  , hence it can be written 
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This means that )(
1
  is an even function of frequency and )(

2
  is odd. Using these properties, the 

integral can be transformed into one of definite parity by multiplying the numerator and denominator of the 

integrand by )(    and separating, we obtain; 
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Since )(
2
  is odd, the second integral necessarily vanishes and we are left with 
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The same derivative for imaginary parts also gives 
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Equation (6) and (7) are the so called K-K relation in a form that is generally applied for a physically realistic 

response function [1,2] 

 

II. Theoretical Formulation 
2.1.   K-K relation from response function 

For a non-linear and time invariant system, the property of a causal function requires a vanishing 

impulse response in time domain directed to the K-K relation in frequency domain [7]. The simplest causal 

function is the Heaviside step function which can simply be defined by the integrals, 
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Where )( ttt  and 0)()(  ttutu such that 0t  or 0)(  tt . 
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Figure 1: A typical representation of the Heaviside step function. 

. 

Given )( th as the impulse response of a linear system, )(H of the frequency response, then the Fourier 

transform of the frequency response is given by:  
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If we assume the impulse function, 0)( th  such that 0t , then it follows that  
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Equation (12) as derived above is the frequency domain and the right hand side can be multiplied with the 

Heaviside step function )( tu to obtain the convolution equivalence; 
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Hence the convolution theorem one obtains 
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The Fourier transform of the Heaviside function can be expressed as 
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Where the sigmoid function )sgn( t  is depicted in figure 2 and is expressed as 
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Figure 2: A typical representation of the sigmoid function. 

 

Its Fourier transform of )sgn( t is given by                                           

Thus,  
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Finding the Fourier function equation (15) one obtains the following; 
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from this one obtains that  
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Substituting equations (17) and (19) into (18) and putting (19) into equation (14) gives yields the  

simple equation, 
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Also from equation (13), one obtains 
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From equation (20), performing the convolution gives, and knowing that   is invariant, the equation becomes 
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Considering two different conditions for the frequency responses at 0  and 0 , hence equation (22) can 

be written as  
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From the right hand side, we have that  
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But since )()(   HH or )()(   HH ,   

 

 We may obtain from the following equation, 

 





















 



d
j

H
d

j

H 0

0 )(

)(

)(

)(
                                                                         (25) 

 

Also the Fourier integral definition, )()(
*
  HH  from equation (22) 
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If we let the frequency    , we find that  
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Separating equation (27) into its real and imaginary parts, we may obtain the following 
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One can readily obtain the real and imaginary part of the K-K relation from equation (28) as 
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And  
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Where the transfer function )(H  is defined by the Fourier transform of the Greens function of a system )( th , 

which is the system’s response to an impulsive perturbation. Since )( th  is a real function, )(H is a complex 

function whose real and imaginary parts are even and odd functions of the frequency, respectively. Hence the 
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real and imaginary parts are not independent of each other. For the equation obtained above to be programmable 

we apply the form; 
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Where P is the Cauchy principal value of the integrals. A simple multiplication of the denominator and 

numerator of equation (30) the integrals by        gives back the K-K relation of equation (29). This will be 

based on the two conditions [8] (i) that the integral over the frequency domain of an odd function is equal to 
zero. (ii) That the integral over the whole frequency domain of even function is equal to two times the integral 

from zero to infinity. Then the equations (31) and (32) above can be written using positive frequencies as: 
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where symbol  represents the Cauchy principal value of the integral. A simple multiplication of the 

denominator and numerator of equation (30) the integrals by )(    gives back the K-K relation of equation 

(29). This will be based on the two conditions [8] (i) that the integral over the frequency domain of an odd 

function is equal to zero. (ii) That the integral over the whole frequency domain of even function is equal to two 

times the integral from zero to infinity. Then the equations (31) and (32) above can be written using positive 

frequencies as: 
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This will result to the numerical solution of the Kramers-Kronig relation. 

 

 

2.2.      Numerical Implementation of K-K Relation Using the Discrete Fourier Transformation (DFT) 

Algorithm 
A numerical recipe of the discrete Fourier transform is actualized using the FFT algorithm. This can be 

developed allowing the K-K relation to be calculated for half of the frequencies at the same time. The fast 

Fourier transform method is based on the fact that both real and imaginary parts of the K-K integrals are 

proportional to the convolution products between the real and imaginary components and the function 1 . 

Applying Fourier transform to both sides of the equations (33) and (34) using the Time-Convolution Theory 

yields, 
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The Fourier transform for real and imaginary parts can be calculated numerically, while that of the  is already 

analytically to be, jf 
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Where   is equal to the conjugate variable of   and 1j . The real and imaginary parts for all the 

frequencies is then obtained by taking into account the inverse Fourier transform upon the products of these two 

functions. To make a numerical calculation of the convolution of equation (30), it must be reorganized in order 

to fulfil the requirements of this calculus. Due to parity of the functions, integrals in (30) are completely solved 

by splitting them into two integrals and calculation just the positive frequency domain. Interchanging the limits 

of the first integral removes the negative sign. But the frequency    can be swapped with (- ), noting that
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ImIm

  HH . Substituting equation (35) into (34) and after a little algebra, one obtains the real and 

the imaginary parts of the K-K relations for the frequency domain namely; 
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III. Results And Discussion 
The resulting equations of the K-K relation which are numerically programmable were implemented in 

MATLAB’s Discrete Fourier Transform (DFT). The DFT is a complex invertible linear transform. If we have a 

vector,   it can be transformed into another vector   in the fast Fourier transform. MATLAB application for the 
DFT is quite simple since it has in-built libraries for the FFT and its inverse fast Fourier transform component 

(iFFT) having vector of length N.  The function fft(x) and its corresponding inverse ifft(X) transforms are 

numerically implemented as the following [9,10,11]: 
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Where N
i

N
e




2

 . Equations (38) and (39) can readily be programmed or obtained directly from Matlab 

libraries as functions usage fft(x) and iff(x) respectively. 

 

 

Figure 3: Plots of real part of the optical dielectric function  )(
r

as a function of frequency detuning 
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  for the calculated (red) and analytical (black). 



On Numerical Strategy for Kramers-Kronig Relations via the Impulse Response Function Approach 

DOI: 10.9790/4200-11061624                              www.iosrjournals.org                                                    23 | Page 

 

Figure 4: Plots of imaginary part of the optical dielectric function  )(
i

as a function of frequency detuning 

 )(
0

  for the calculated (red) and analytical (black) spectra. 

 

As an example in this paper to illustrate the algorithm at different normalised frequencies. Let us consider the 

well-known classical dielectric function emanating from the Fourier transform of the retarded Green’s [2]. 
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The symbols 
l

  and  
0

  are respectively the plasma frequency, critical frequency and photon frequency. It is 

convenient to simply approximate the delta function appearing in equation (42) as the well-known Lorentzian 

linewidth.       i 1)(
0

. The symbol   represents the materials broadening parameter which 

approximates the level of scattering or relaxation of quasi-particles in the real semiconductor material medium. 

Hence one obtains after some algebra the closed form solution of both the real       and       the imaginary 

parts given respectively as  
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The plots of the classical optical dielectric function and their corresponding KKT obtained by MATLAB FFT 

algorithm are depicted as shown in figures 3 and figure 4 above. In figure 2 above, the calculated (FFT) real 

dielectric function )(
r

 show a good agreement with the analytical dielectric function (black). In figure 4, the 

calculated and analytically obtained imaginary dielectric function )(
i

 show good agreement at the resonant 

peak. The little deviation in the calculated )(
i

 within the vicinity of the normalised resonant frequency may 

be compensated by frequency padding. However, the accurate estimate of the amplitude and their corresponding 

resonance frequencies are genuinely guaranteed (Haug and Koch, 2004).This thus paves a way for a wide 

application in material data analysis such as in absorption and photoluminescence spectroscopy.   

 

IV. Conclusion 
In this study, we have reviewed the derivation of the dispersions relations arising from the K-K 

transformation via the frame work of the causal time-domain impulse response function. This approach was 

seen to exhibit a resonant behavior for the K-K relations over finite frequency bands. Using the algorithmic 

approach for the implementation of the K-K relation in MATLAB, well and consist results were reproduced 

when applied to the simple case of the dielectric function of a simple oscillator model. The results obtained offer 

a promising spectroscopic estimates in materials data analysis with the prior knowledge of the real or imaginary 

part of any complex material spectroscopic property and vice versa. Though, the methods of our calculation 
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show somewhat a lower precision in the frequency tails of the imaginary part of the real dielectric function, the 

major artifacts and resonance signatures are genuinely preserved, showing its validity in material spectroscopy. 
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