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Abstract 
Irregular heartbeats due to abnormal electrical heart activity are symptom of Cardiovascular disease (CVD), it 

is a source of stroke, blood clots, heart failure and other heart-related complications. Most of the developed 

Electrocardiogram (ECG) based automatic cardiac arrhythmia detection systems require the availability of a 

large data with all arrhythmias for the training process, and cannot be updated without adequate data and cost. 

Therefore, this paper aims to develop a continual learning method by introducing incrementally new 

arrhythmias to a deep learning CVD detection system already trained with old ones. However, due to the 

catastrophic forgetting phenomenon, the pre-trained model loses its pre-acquired knowledge and performs 

poorly, if it is subject to a new training process. To overcome this handicap, we propose a new model neural 

architecture Contrast-CLGAN consisting of two trainable submodules. The first module adjusts its weights in 

such a way as to classify the input Electrocardiogram signal and distinguish between the arrhythmias, using 

cross-entropy and mean square error loss functions. Simultaneously, the second module tries to keep a trace of 

the seen data and memorizes them by learning its parameters to discover, extract, and retain the hidden 

structure of the training data. A contrastive learning module is intercalated before the classifying module to 

enhance the distinction between the different classes and, therefore, boost the accuracy of the deep model. By 

comparing the proposed method to the state-of-the-art, the proposed model showed improved performance in 

classifying different arrhythmias from the MIT-BIH, INCART, and SVDB databases.  

Keywords: Electrocardiogram classification; continual learning; catastrophic forgetting; generative model, 

contrastive learning. 

 

I. Introduction and literature review 
The heart is the main organ of the human cardiovascular system that pumps incessantly blood 

throughout the body during the whole lifespan. The heart walls (three layers, inner layer called the 

Endocardium, the middle layer called the Myocardium, and the outer layer called the Epicardium) are the 

muscles that contract and relax to move and transmit blood throughout the body. The heart contains four main 

sections, two upper chambers (the atria) and two lower chambers (the ventricles), made up of muscle and 

powered by electrical impulses. The role of these chambers is vital in the process of pumping blood throughout 

the entire body via the vessels of the circulatory system, maintaining the right amount of dissolved oxygen in 

the blood, and controlling the blood pressure[1]. 

CVDs, which are conditions that affect the structures or function of the heart, are a serious societal 

problem. Every year, 17.3 million persons die from cardiovascular disease [2]. CVDs are the most leading cause 

of death, constituting over 31% of deaths around the world [3]. More than 50% of sudden cardiac deaths result 

from cardiac arrhythmias and are causing half of the deaths on account of all heart diseases [4]. The simple and 

effective option to diagnose cardiac arrhythmias is ECG. The latter is a non-invasive and easy-to-use way to 

obtain abundant health and pathology information about the heart [5]. Electrocardiography reveals the 

pathological states of cardiovascular systems by alterations in their wave shapes or rhythms [6]. Often, the 

randomness of arrhythmia events and differences in doctors’ skills cause misdiagnosis in clinical practice. 

Accurate automatic cardiac arrhythmia events detection and identification help doctors monitor heart conditions.   

Cardiac monitoring and heart abnormalities detection using an automatic ECG signals classification 

system is a challenging task. In recent years, several works for cardiac arrhythmia detection have been 

conducted[1]. In [7]–[9], cardiac arrhythmias are detected using wavelet features and independent component. 

Morphological features extraction techniques used to build an automatic ECG signal classification system are 

developed in [10]–[12]. In [13], [14] , authors used a support machine vector (SVM) to classify heartbeat signal 

samples. Higher-order statistic feature extraction technique is used in [15], [16]  for an efficient ECG signal 

classification. Artificial Neural Network (ANN) architecture derives from the ability to create a computer 
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system that simulate the human brain. ANNs are composed of three main (input, hidden and output) layers. The 

connections are set up between layers through weights and bias. ANN are implemented to learn and 

approximate complex nonlinear function [17], [18]. ANN based techniques have been used intensively and 

effectively to classify ECG signals in [19], [20]. 

Signal processing models and analyses data representations of measured physical events. Deep learning, 

which has aroused as an effective tool for analysing big data, gives new opportunities to generate predictive 

models to solve a large variety of signal processing applications. Within Deep Learning, a Convolutional Neural 

Network (CNN), which is a type of artificial neural network inspired by the architecture of the human brain, is 

widely used for pattern recognition and classification [21], [22]. In the last few years, CNN models have been 

used effectively and efficiently to detect heartbeat arrhythmias. Feature extraction is a crucial process before 

classification. CNN is a sequence of convolution layers, activation function, pool layer, and fully-connected 

layer linked to extract optimal discriminative features combined with a classifier to diagnose cardiac disease 

[18],  [19]. Most of the existing ECG classification methods, including the CNN-based deep learning models, 

deem that all arrhythmia classes are well known during the initial learning phase. Consequently, providing a 

dataset containing all the classes is required for the learning phase. Humans have the potential to continuously 

acquire, fine-tune, and transfer skills and knowledge throughout their lifetime. This paper addresses the issue of 

learning various sequential learning tasks, where during each new learning task, there are a set of new 

arrhythmia classes to learn. Suppose that the old learning task consists of classifying an ECG dataset labelled 

into N classes. Subsequently, a new task consisting of the classification of a set of M classes ECG dataset is 

added. The most straightforward way is to amalgamate the two ECG datasets and train a deep model to classify 

ECG heartbeats into N+M classes. Nevertheless, it may be hard to maintain a good classification performance 

due to the lack of an old task dataset when dealing with the new task. Moreover, if we retrain the pre-trained 

deep model on the new M classes dataset, the retrained model will mislay its high classification performance for 

the first dataset. Retraining the model on a new classification task will disturb its parameters, and consequently, 

the model will forget about the old classification task and perform weakly. This performance deterioration 

phenomenon is known as ‘catastrophic forgetting’[25]–[27]. This situation can also be deemed as a multi-task 

classification problem, where the classification using different datasets at different times is considered a disjoint 

classification task. In this case, the we need the availability of all the datasets during the training phase. In the 

machine-learning community, this problem is well known as learning-without-forgetting (LwF) [28], 

incremental learning, or continual learning [29]. 

Several techniques for incremental learning are proposed in the deep learning community. In[30], the 

authors proposed to extend a deep neural network model by adding convolutional layers associated with the 

unseen classes of the new task. In [31], the authors proposed to fight the forgetting phenomena in the continual 

learning process by adding new nodes and augmenting the layer size in the network using a controller network. 

Elastic weight consolidation (ECW) is proposed in [32], the authors proposed to reduce the learning effect 

selectively on significant weights for the old tasks using regularization parameters. Finally, the authors in[33] 

proposed a solution (Lwf-ECG) based on deep model that combines pre-trained CNN for feature extraction, a 

memory module to store one prototype for each task, and a deep model for task selection to classify an ECG 

heartbeat signals.  

Specifically, in this research paper, we propose a new trainable deep learning model able to perform in 

a continual learning manner without degrading when executing old classification tasks. The proposed deep 

neural network architecture includes three trainable modules. The first module is an EfficientNet based feature 

extraction model. The second module is a contrastive learning model followed by a classification model. 

Normalized features from the same class are pulled closer together, and features from different classes are 

pushed away from each other. The third module is a Generative Adversarial Networks (GAN), used as a 

generative model to memorize the latent structure of the old tasks datasets.  

 

II. Materials and Methods 

Given a long series of tasks 𝑇𝑘 = {𝑋𝑖
(𝑘)

, 𝑦𝑖
(𝑘)

}
𝑖=1

𝑁𝑘
, 𝑘 = 1, … , 𝐾, where during each ECG heartbeat classification 

task 𝑇𝑘, we aim to train the same previously trained deep model on the new subset 𝑐𝑘 classes with 𝑁𝑘 ECG data 

𝑋(𝑘) and their corresponding categorical class labels 𝑦(𝑘),  without forgetting the old tasks classification 

performance. For this sake, we propose a new deep learning architecture composed of three main modules, as 

illustrated in Figure 1. The first module contains a feature extraction backbone CNN responsible for producing 

good features to ensure effective discrimination between the ECG classes of both new and old tasks. The role of 

the second module is to memorize the hidden structure of the old tasks dataset, and it is trained to generate data 

representing the already seen classes. The third module is a deep contrastive optimization architecture used to 

increase the disparity between the ECG heartbeat classes and boost the model performance. Next, we will 

discuss the different parts that constitute the proposed architecture. 
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Figure1. Contrastive learning and GAN based hybrid model. 

 

2.1 Feature extraction module 

Feature extraction is the most crucial step of biomedical signal processing. The goal of feature 

extraction is to find the most compacted and informative set of features to enhance the discrepancy between the 

ECG data classes. For images data, pre-trained CNNs are very effective feature extraction modules. To benefit 

from this remark, which appeared in the literature [34], we converted the 1D ECG signal into an image before 

the feature extraction phase. In [34], the conversion of the 1D ECG signal to a 2D image is obtained via training 

a series of CNN layers.  

The feature extraction block contains two sub-networks as illustrated in Figure 2. The role of the first 

sub-network is to convert the 1D ECG heartbeat into an image. The ECG signal is fed into a fully-connected 

layer with dimension 1024 followed by fully-connected, reshaping, up-sampling, and convolution layers to 

produce an image of dimension (3,28,28). The second sub-network is an EfficientNetB5 used to extract 

compacted and informative features from the ECG images. EfficientNetB5 is a recent pre-trained CNN that has 

illustrated remarkable performances in image classification. EfficientNeTB5 is a CNN deep architecture using a 

scaling method that uniformly scales the dimensions of depth/width/resolution using compound coefficient  

[35]. The top softmax classification layer of the EfficientNetB5 is removed and replaced with a fully connected 

layer followed by a reshape layer to extract an ECG feature of dimension (1,20,20). This extracted ECG 

heartbeats grayscale image size is chosen in order to reduce the computation time, but an image of different 

sizes can be chosen. 
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Figure 2. Feature extraction module and 1D ECG signal to image CNN conversion 

 

2.2 Old tasks’ features generation 

In order to memorize the latent structure of the previously seen data, a deep learning-based generative 

model is used to control the forgetting phenomena.  A generative adversarial network, known as GAN for short, 

is used to learn the complex latent space of the old tasks’ data and try to reproduce data with the same structure 

or clusters. The architecture of the GAN is composed of a generator 𝐺𝜑(∙) with learnable parameters 𝜑 and a 

discriminator 𝐷𝜃(∙) with learnable parameters 𝜃 as shown in Figure 1. The generator is trained to fake the 

discriminator by reproducing the real heartbeat ECG signal from noise, and the discriminator is trained to 

distinguish between the generated/fake signal and the real signal. The discriminator model and the generator 

model play the minimax game with value function given in Equation 1: 

ℒ𝐺𝐴𝑁 = min
𝐺𝜑

max
𝐷𝜃

[𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷𝜃(𝑥)] + 𝔼𝑥~𝑝𝑧(𝑧)[log(1 − 𝐷𝜃(𝐺𝜑(𝑧)))]] (1) 

For a mini-batch of 𝑚 noise samples {𝑧(1), … , 𝑧(𝑚)} from noise prior 𝑃𝑔(𝑧) and a mini-batch of 𝑚 samples 

{𝑥(1), … , 𝑥(𝑚)} from data generation distribution 𝑃𝑑𝑎𝑡𝑎(𝑥), the discriminator is updated by ascending its 

stochastic gradient using Equation 2, 

∇𝜃

1

𝑚
∑ [log 𝐷𝜃(𝑥(𝑖)) + log (1 − 𝐷𝜃 (𝐺𝜑(𝑧(𝑖))))]

𝑚

𝑖=1

 
(2) 

For a mini-batch of 𝑚 noise samples {𝑧(1), … , 𝑧(𝑚)} from noise prior 𝑃𝑔(𝑧), the generator is updated by 

descending its stochastic gradient given in Equation 3, 

∇𝜑

1

𝑚
∑ [log (1 − 𝐷𝜃 (𝐺𝜑(𝑧(𝑖))))]

𝑚

𝑖=1

 
 

(3) 

 

2.3 Contrastive learning 

Recently, the contrastive learning technique has led to significant enhancements in self-supervised 

representation learning. A contrastive optimization module is added before the classification process to increase 

the disparity between ECG heartbeat signal classes and boost the classifier performance. The key idea in the 

contrastive learning strategy is to create pairs of positive samples, the anchor with a sample from the same class 

that are attracted in the embedding space, and pairs of negative samples, an anchor with sample from different 

class that are repealed in embedding space as illustrated in Figure 3. The concept in the contrastive learning 

strategy is to create pairs of positive samples taken from the same class and negative samples taken from the rest 

of the classes. The anchor attracts the positive sample and repeals the negative sample in the embedding space. 

The contrastive optimization module encapsulates an encoder network 𝐸𝑛𝑐(∙) to map the vector 𝑝 = 𝑓𝑡𝑟(𝑥) ∈
ℛ20×20×1(the feature of the input sample 𝑥) into a normalized vector 𝑟 = 𝐸𝑛𝑐(𝑝) ∈ ℛ2048, and a projection 

network 𝑃𝑟𝑜𝑗(∙) to map the output of the encoder to a vector 𝑞 = 𝑃𝑟𝑜𝑗(𝑟)an embedding into a normalized unit 

hypersphere in ℛ128. The projection network, discarded at the inference time, is used only in the contrastive 

training step.   

 
Figure 3. Contrastive learning based representation space 
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For a pair of ECG heartbeat data {𝑥𝑖 , 𝑥𝑗} and their representations {𝑞𝑖 , 𝑞𝑗}, the distance between the 

representations of the input data 𝑥𝑖 and 𝑥𝑗  in the latent space is computed using Equation 4: 

𝑑(𝑥𝑖 , 𝑥𝑗) =  ‖𝑞 −  𝑞‖2 = ‖𝐸𝑛𝑐(𝑃𝑟𝑜𝑗(𝑝𝑖)) −  𝐸𝑛𝑐 (𝑃𝑟𝑜𝑗(𝑝𝑗))‖
2
 (4) 

By using Equation 5, we can obtain the contrastive loss function ℒ𝐶𝐿 as: 

ℒ𝐶𝐿(𝑥𝑖 , 𝑥𝑗) =  0.5 [𝑦(𝑥𝑖 , 𝑥𝑗) ∙ 𝑑(𝑥𝑖 , 𝑥𝑗)
2

+ (1 − 𝑦(𝑥𝑖 , 𝑥𝑗)) ∙ 𝑚𝑎𝑥(𝑚 − 𝑑(𝑥𝑖 , 𝑥𝑗), 0)
2

] + 𝜆‖𝑤‖2 (5) 

Where the binary ground truth label 𝑦(𝑥𝑖 , 𝑥𝑗) = 0 indicates that the pair of images are not-similar (anchor with 

negative sample), and 𝑦(𝑥𝑖 , 𝑥𝑗) = 1 for similar pair images (pair of samples from the same class). The hyper-

parameter 𝑚 is the margin representing the threshold for the non-similar pair of images chosen by the user.The 

hyper-parameter 𝜆 controls the regularization term. The contrastive objective function ℒ𝐶𝐿is minimized to reach 

the optimal parameters of the encoder network𝐸𝑛𝑐(∙) and the projection network 𝑃𝑟𝑜𝑗(∙). Thus, the feature 

samples from the same class are attracted to be closer to each other in the embedding space, and thefeature 

samples from different classes are repelled and brought far from each other. 

 

2.4 Proposed continual learning algorithm 

In the continual learning process, the classification model performs a sequence of 𝐾 classification 

tasks, and for each task, only the new unseen classes are available (i.e. the data for the old and future tasks is not 

accessible). The objective in the continual learning process is to learn the new task and perform well on all the 

already seen tasks. To implement a sequential learning process, the ECG data set is split into 𝐾 tasks, each 

classification task 𝑇𝑘 includes 𝑁𝑘 ECG heartbeats 𝑋(𝑘) with their corresponding categorical class labels 𝑌(𝑘) 

representing 𝑐𝑘 classes. For instance, the MIT-BIH dataset contains 12 classes, thus we can build a continual 

learning process using 6 tasks with 2 classes per task.  

After 𝑘 − 1 tasks, our target is to train the model on a new task 𝑇𝑘. First, the ECG heartbeat signals 

𝑋(𝑘) of task 𝑇𝑘 are converted to ECG images 𝐼(𝑘). Then, features from 𝐼(𝑘) are extracted using the EfficientB5 

backbone network  𝑊(𝑘) = 𝑓𝑡𝑟(𝐼(𝑘)). To fight the forgetting phenomena, a GAN architecture is used to 

generate the old tasks heartbeat signal(𝑋𝐺
(1)

, … , 𝑋𝐺
(𝑘−1)

) (the GAN was trained on the task 𝑇𝑘−1heartbeat signals 

gathered with the generated heartbeat signals of the old tasks (𝑇1, … , 𝑇𝑘−2)). Afterward, a contrastive learning-

based module is trained using positive and negative feature pairs, randomly selected from the features dataset 

(𝑊(1), … , 𝑊(𝑘)), to enhance the disparity between the data clusters and boost the classifier performance. 

Finally, a classifier is trained to classify the enhanced features into 𝑐𝑘 classes.The architecture of the proposed 

continual learning model is illustrated in Figure 1. During each new task𝑇𝑘, the parameters of the feature 

extraction backbone and the classifier are learned by training and optimizing the loss functions of the model 

using the training subset of the actual classification task dataset. The training dataset of the actual task is created 

using the new task 𝑇𝑘 training dataset (new unseen classes) gathered with the generated synthetic dataset of the 

old classification tasks  𝑇𝑘−1, 𝑇𝑘−2, … , 𝑇1.In parallel, the parameters of the GAN model are learned by training 

the GAN on the same training dataset of the actual classification task. Finally, we furnish a procedural 

description of the proposed algorithm Contrast-CLGAN in algorithm 1. 
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Algorithm 1: 
 
Start with: 
𝜃𝑓𝑡𝑟:parameters of the feature extraction module. 

𝜃𝐶𝐿:parameters of the contrastive learning module. 
𝜃𝑐𝑙𝑎𝑠𝑠𝑖𝑓:parameters of the classificationlayer. 

𝜃𝐺𝐴𝑁:parameters of the feature generation module. 

{𝑋(𝑘), 𝑌(𝑘)}:training data and ground truth of the new task. 

 
Initialize: 

𝑧 = {𝑧𝑖}𝑖=1
𝑀   ← 𝒩(0,1)   // generate 𝑀 random noise vectors. 

𝑋𝐺
(1:𝑘−1)

= {𝑋𝐺
(𝑖)

}
𝑖=1

𝑀

  ← 𝐺𝜑(𝑧)    // generate the old tasks’ features from the trained GAN’s generator. 

𝑌𝐺
(1:𝑘−1)

  ←  𝐶𝑁𝑁𝑐𝑙𝑎𝑠𝑠𝑖𝑓(𝑋̂𝐺
(1:𝑘−1)

) // get the labels of the generated features. 

𝜃𝑓𝑡𝑟 , 𝜃𝐶𝐿 , 𝜃𝐺𝐴𝑁  ← 𝑅𝑎𝑛𝑑𝐼𝑛𝑖𝑡(|𝜃𝑓𝑡𝑟|, |𝜃𝐶𝐿| , |𝜃𝐺𝐴𝑁|)// randomly initialize the model parameters. 

 
Train: 

Define  𝑌̂𝑘    ←  𝐶𝑁𝑁𝑐𝑙𝑎𝑠𝑠𝑖𝑓(𝑋(𝑘), 𝜃𝑓𝑡𝑟 , 𝜃𝐶𝐿 , 𝜃𝑐𝑙𝑎𝑠𝑠𝑖𝑓) // New task output 

𝜃𝑓𝑡𝑟
∗ , 𝜃𝐶𝐿

∗ , 𝜃𝑐𝑙𝑎𝑠𝑠𝑖𝑓
∗ ←   argmin

𝜃𝑓𝑡𝑟,𝜃𝐶𝐿,𝜃𝑐𝑙𝑎𝑠𝑠𝑖𝑓

(ℒ𝑐𝑙𝑎𝑠𝑠𝑖𝑓(𝑌̂(𝑘), 𝑌(𝑘)) + ℒ𝐶𝐿(𝑤(𝑙), 𝑤(𝑛))) 

Define  𝑋𝐺
(1:𝑘−1)

   ←  𝐶𝑁𝑁𝐺𝐴𝑁(𝑧, 𝜃𝐺𝐴𝑁) // GAN model output 

𝜃𝐺𝐴𝑁
∗ ←   argmin

𝜃𝐺𝐴𝑁

(ℒ𝐺𝐴𝑁([𝑋𝐺
(1:𝑘−1)

, 𝑋(𝑘)], 𝑧)) 

 

 

III. Experimental results and discussion 
 Experiments are conducted on three known ECG datasets to evaluate the proposed Contrast-CLGAN 

method. Namely, the MIT-BIH dataset[36], the INCART dataset[37], and the SVDB dataset[38]. The results of 

the experiments are compared with the recent works in the literature to illustrate the proposed method's 

performances.  

 

3.1 Dataset description  

 Three ECG database are used to show the capabilities of the Contrast-CLGAN model, as illustrated in 

Table 1. The detailed class statistics for these databases are given in Table 2. Figure 4 illustrates some samples 

of the used ECG signals. Before performing the experiments, the ECG signals are segmented into heartbeats 

using Ecgpuwave software and resampled to a fixed size of 300 samples [39], [40].  

 

Table 1. ECG datasets that are used in the experiments. 
Dataset Field Value  

MIT BIH Description:  

 

MIT-BIH Arrhythmia Database contains 48 records with 30 min duration each 

of two-channel ambulatory ECG recordings obtained from 47 subjects. The 

recordings were digitized at 360 Hz per channel with an 11-bit resolution. 
No. of records: 48 records, each record is 30 min in length 

Sample rate (Hz) 360 

No. of leads 2 

INCART Description:  
 

INCART database contains 75 annotated recordings extracted from 32 Holter 
records. Each record is built of a half-hour ECG recording sampled at a rate of 

257 Hz and contains 12 standard leads. 

No. of records: 75 records. Each record is 30 min in length. 
Sample rate (Hz) 257 

No. of leads: 12 

SVDB Description:  
 

This database consists of 78 two-lead recordings with a duration of 
approximately 30 min and sampled at a rate of 128 Hz. 

No. of records: 78 records. Each record is 30 min in length 

Sample rate (Hz) 128 
No. of leads: 2 

Table 2. Class names and distributions of used ECG datasets. 
Class 
name 

Class description Dataset 

MIT-BIH MIT-
SVDB 

INCART 
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N Normal beat    76820 145436 150283 

L Left bundle branch block beat 8069 - - 

R Right bundle branch block beat 9414 - 3170 
A Atrial premature beat 2647 - 1942 

a Aberrated atrial premature beat 150 - - 

J Nodal (junctional) premature beat 83 9 - 
s Supraventricular premature beat - - 16 

V Premature ventricular contraction 6987 10723 20000 

F Fusion of ventricular and normal beat 803 8281 219 
j Nodal (junctional) escape beat 229 23 92 

E Ventricular escape beat 106 - - 

f Fusion of paced and normal beat 722 - - 
Q Normal beat 33 74 6 

Total  106,063 175,728 164,546 

 

  
                                 (a)                                                              (b) 

 
(c) 
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Figure 4. ECG signal record samples: (a) MIT-BIH database, (b) SVDB database, and (c) INCART database. 

 

3.2 Experiment setup and performance evaluation 

To test the Contrast-CLGAN model and perform a continual learning process, we divided each dataset 

into a group of tasks. For each new task, 80% from the new task dataset is used for the training, and 20% is 

saved with the old classification tasks testing sets to be used in the testing time. 

To preserve the acquired knowledge about the old classification tasks, a GAN model, which comprises 

a generator (to generate synthetic samples) and a discriminator (to discriminate between the true samples and 

the fake generated samples), is used to learn the unknown probability distribution of the dataset. The generator 

architecturehasan input layer of shape100 nodes (noise), three hidden layers (256, 512, 1024) nodes with the 

Leaky-Relu activation function, each hidden layer is followed by a batch normalization layer, and an output 

layer of shape (20 × 20 × 1).The discriminator architecture comprises an input layer of shape (20 × 20 × 1), 

two hidden layers (with Leaky-Relu activation function) of shape 512 and 256 respectively, and an output layer 

of one node. The GAN has 592,897trainable parameters to be learn. 

The old task features, generated using the trained GAN, are added to the new task features to train the 

contrastive learning module (two tower modules using an embedding module with an input layer(20 × 20 × 1), 

Batch-Normalization layer, Flatten layer, hidden layer (256 𝑛𝑜𝑑𝑒𝑠), the output is a one node dense layer) and 

the classifier (Multilayer Perceptron MLP with input (20 × 20 × 1), hidden layer (1024) , and an output layer 

with number of classes outputs). Adam optimizer with learning rate of 0.002 is used to train the GAN. 

Stochastic gradient descent (SGD) optimization algorithm with a learning rate of 0.01 is used to learn the 

parameters of the classifier and a contrastive loss with margin 𝑚 = 1and RMSprop optimizer are used to train 

the contrastive learning model. To perform the task 𝑇𝑘, we train the total model (feature extraction backbone, 

the classifier with contrastive optimization, and the GAN) on the 𝑘𝑡ℎ task dataset. Then, we generate synthetic 

features of task 𝑇𝑘−1  using the GAN and add them to the new task dataset features to train the classifier and the 

GAN for the new task 𝑇𝑘. All the experiments were conducted on the Google Colaboratory cloud service using 

the available GPU to accelerate the deep learning process. 

 

3.3 Experimental results 

In the first experiment, and before performing the continual learning process, the Contrast-CLGAN 

model was experimented on the total dataset using all the classes. An accuracy of 99.04%, 98.9%, and 

97.74%was obtained for the MITBIH, INCART, and SVDB datasets respectively. Afterward, we conducted 

several continual learning experiments using the proposed deep learning architecture.  

In the second experiment, six tasks (2 classes per task) incremental learning using the 12 classes MIT-

BIH dataset is implemented. As illustrated in Table 3 and Figure 5 (a), the model achieved an overall accuracy 

(OA) of 99.92% at the first task, then reached the accuracy of 93.45% at the last classification task after 

performing all the tasks incrementally. A small decrease of 6.47% in accuracy happened during the continual 

learning process.   

 

Table 3. Overall accuracy in [%] obtained for six tasks (2 classes/task) MIT-BIH 12 classes dataset. 
Task One Step Learning Overall Acc. Avg. Acc. F1-Score 

1  
 

 

99.04 

99.92 99.92 99.75 

2 99.27 99.63 95.13 

3 94.49 98.16 93.86 

4 97.78 99.44 96.15 

5 97.38 99.48 97.10 

6 93.45 98.91 88.55 

 

In the third experiment, the performance of the proposed continual learning model is tested using the 

eight classes INCART dataset. For a unique task with the entire dataset, the model performed with an accuracy 

of 98.9%. During the four tasks incremental learning (2 classes per task), the model executed the first task with 

an accuracy of 99.94% and terminated the continual learning process with an accuracy of 98.04% in the last 

classification task as shown in Table 4 and Figure 5 (b).A decrease of 1.9% in accuracy is noticed after 

performing all the tasks sequentially. 

 

Table 4. Overall accuracy in [%] obtained for four tasks (2classes/task) from INCART dataset. 
Task One Step Learning Overall Acc. Avg. Acc. F1-Score 

1 98.9 99.94 99.94 99.26 

2 97.99 98.99 93.32 

3 99.88 99.96 82.82 

4 98.04 99.51 86.96 



Contrast-CLGAN: Contrastive Continual Learning using GAN-based Data Generation for .. 

DOI: 10.9790/4200-14031425                                      www.iosrjournals.or                                              22 | Page 

 

The SVDB dataset is used to evaluate the proposed architecture in the fourth experiment. The model 

performed with an accuracy of97.74% on the entire dataset. During the incremental learning process, and to 

perform three tasks (2 classes per task), we divided the SVDB dataset into three sets. As illustrated in Table 5 

and Figure 5 (c), the model achieved the first task with an accuracy of 100%, and reached the last task with an 

accuracy of 98.79% with a difference of 1.21%. 

 

Table 5. Overall accuracy in [%] obtained for four tasks (2 classes/task) SVDB six classes dataset 
Task One Step Learning Overall Acc. Avg. Acc. F1-Score 

1 97.74 100 100 100 

2 98.17 99.58 99.07 

3 98.79 99.60 98.81 

 

The fifth experiment is conducted to check the sensitivity of the proposed classification deep model to 

the number of classes per task. The twelve classes MIT-BIH dataset is divided into three sets, six tasks with 2 

classes per task, four tasks with 3 classes per task, and three tasks with 4 classes per task. A continual learning 

experiment is executed on each set, and the results are collected and depicted in Figure 5. As shown in Figure 6, 

the number of classes per classification task does not affect the continual learning process in a significant 

manner. 

 

 
                                    (a)                                                                     (b)  

 
(c) 

Figure 5. Accuracy versus tasks for different datasets: (a) Accuracy for MIT-BIH database partitioned into 6 

tasks with 2 classes by task, (b) Accuracy for ICART database partitioned into 4 tasks with 2 classes by task, (c) 

Accuracy for SVDB database partitioned into 3 tasks with 2 classes by task. 
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Figure 6. Sensitivity to the number of classes per task 

 

The performance of the proposed architecture was also compared against the two state-of-the-art 

methods called elastic weights consolidation (EWC) [32] and Learning-without-forgetting approach for 

electrocardiogram heartbeat classification based on memory with task selector (LwF-ECG) [33]. Compared to 

the state-of-the-art methods EWC[32] and LwF-ECG [33], the Contrast-CLGAN method is significantly better 

for all datasets as shown in Table 6. The proposed modelmaintains its performance between the different 

classification tasks during the incremental learning process, demonstrating the strong capability of the Contrast-

CLGAN method at preserving the acquired knowledge about the old classification tasks. 

 

Table 6. Comparison with other methods. 
Dataset  MIT-

BIH 
   INCART    SVDB  

Method Proposed LwF 
[28] 

EWC[2
7]  

 Propose
d 

LwF [28] EWC[2
7]  

 Proposed LwF 
[28] 

EWC[2
7]  

Task            
1 99.92 99.78 94.70  99.94 98.51 97.77  100 99.70 95.70 
2 99.27 87.68 71.64  97.99 80.97 79.70  98.17 90.37 64.00 

3 94.49 76.13 89.99  99.88 79.90 54.00  98.79 87.95 48.82 

4 97.78 74.29 70.21  98.04 72.83 48.32  - - - 

5 97.38 71.67 
77.99 

 - - -  -  - 

6 93.45 66.35 54.15  - - -  - - - 

 

3.4 Discussion 

From the obtained results, it is clear that the conversion of the 1D ECG signal into a 2D image and the 

insertion of a contrastive learning module at the top of the model have boosted the classification accuracy 

significantly. Memorizing knowledge about the old tasks is required to fight the forgetting phenomenon during 

the continual learning process. For this purpose, the GAN has the role of gathering and memorizing the 

necessary information about the old tasks in its weights. Once needed during the new task, the old tasks data is 

generated using the GAN model. Another utility of the GAN is to generate and augment the data of small 

classes, which is necessary for training a deep model.  

 

IV. Conclusions and feature scope 
Learning without forgetting remains a challenging task due to the difficulty in preserving the acquired 

knowledge of previous classification tasks when training the pre-trained model on a new classification task. In 

this work, a continual learning solution for ECG heartbeat classification is presented. The proposed deep 

learning model comprises three trainable modules. The first module learns to extract good features to distinguish 

between the different classes of the ECG heartbeat signal. The second module learns to increase the contrast 

between the different ECG heartbeat classes by using a contrastive learning strategy. The third module 

contributes to the continual learning process by preserving the previous dataset’s knowledge by conserving their 

latent structures. Another contribution is the feature extraction sub-model which converts the 1D ECG heartbeat 

signal into a 2D image via a set of neural network layers to get good features from the EfficientNet CNN feature 

extraction layers. The experimental results obtained from the classification of different ECG signal datasets 

showed the efficiency of the proposed architecture to deal with learning without forgetting.  
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In this proposed research work, we presented a generative model based framework for training a deep 

model to learn a sequence of tasks without forgetting the acquired knowledge. In future work, we will propose 

new efficient techniques to keep the knowledge of the previously learned tasks and to boost the discrimination 

between the different classes in the feature space. 
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