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 Abstract : With the development of CT, MRI, PET, EBCT, SMRI etc, the scanning rate and distinguishing rate 

of imaging equipment is enhanced greatly. Using wavelet technology, medical image can be processed in deep 

degree by denoising, enhancement, edge extraction etc, which can make good use of the image information and 

improve diagnosing. Compressions based on wavelet transform are the state-of-the-art compression technique 

used in medical image compression. For medical images it is critical to produce high compression performance 

while minimizing the amount of image data so the data can be stored economically. Modern radiology 

techniques provide crucial medical information for radiologists to diagnose diseases and determine appropriate 

treatments. Such information must be acquired through medical imaging (MI) processes. Since more and more 

medical images are in digital format, more economical and effective data compression technologies are 

required to minimize mass volume of digital image data produced in the hospitals. The wavelet-based 

compression scheme contains transformation, quantization, and lossless entropy coding. For the transformation 

stage, discrete wavelet transform and lifting schemes are introduced. In this paper an attempt has been made to 
analyse different wavelet techniques for image compression. Hand designed wavelets considered in this work 

are Haar wavelet, Daubechie wavelet, Biorthognal wavelet, Demeyer wavelet, Coiflet wavelet and Symlet 

wavelet. These wavelet transforms are used to compress the test images competitively by using Set Partitioning 

In Hierarchical Trees (SPIHT) algorithm. SPIHT is a new advanced algorithm based on wavelet transform 

which is gaining attention due to many potential commercial applications in the area of image compression. The 

SPIHT coder is also a highly refined version of the EZW algorithm. 
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I. INTRODUCTION  
Image compression is one of the most important and successful applications of the wavelet transform. 

Mature wavelet based image coders like the JPEG2000 standard [1] are available, gaining popularity, and easily 

outperform traditional coders based on the discrete cosine transform (DCT) like JPEG [2]. Unlike in DCT based 

image compression, however, the performance of a wavelet based image coder depends to a large degree on the 

choice of the wavelet. This problem is usually handled by using standard wavelets that are not specially adapted 

to a given image, but that are known to perform well on photographic images.  

However, many common classes of images do not have the same statistical properties as photographic 

images, such as fingerprints, medical images, scanned documents and satellite images. The standard wavelets 

used in image coders often do not match such images resulting in decreased compression or image quality. 

Moreover non-photographic images are often stored in large databases of similar images, making it worthwhile 

to find a specially adapted wavelet for them. 

Memory and bandwidth are the prime constraints in image storage and transmission applications. One 
of the major challenges in enabling mobile multimedia data services will be the need to process and wirelessly 

transmit a very large volume of data. While significant improvements in achievable bandwidth are expected 

with future wireless access technologies, improvements in battery technology will lag the rapidly growing 

energy requirements of future wireless data services.  

One approach to mitigate this problem is to reduce the volume of multimedia data transmitted over the 

wireless channel via data compression techniques. This has motivated active research on multimedia data 

compression techniques such as JPEG [3, 4], JPEG 2000 [5, 6] and MPEG [7]. These approaches concentrate on 

achieving higher compression ratio without sacrificing the quality of the image. However these efforts ignore 

the energy consumption during compression and RF transmission. Since images will constitute a large part of 

future wireless data, the thesis aim on developing energy efficient and adaptive image compression and 

communication techniques. Based on wavelet image compression, energy efficient multi-wavelet image 
transform is a technique developed to eliminate computation of certain high-pass coefficients of an image. 
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II. RELATED WORK 
Any type of data transmission or storage without compression is impractical for the following reasons. 

 The data handled by different digital environments is increasing at a rate more than twice a year.  

 Similar to the case of storage, the transmission is the other concern. With the insight into the World Wide 

Web (WWW), where more than 7500 Tera Bytes of data is being downloading and/or uploading, the 

transmission is the major concern in the modern world. 

 The storing of digital data and transmission without compression would be a tragedy. Hence it was 

made mandatory to have compression in one form or other. To incorporate compression or even to modify any 

image in any sense, frequency domain is assumed to be more convenient. To transform an image from spatial 

domain to frequency domain, the basic technique that was in use is Discrete Cosine Transform (DCT). DCT is 

very simple technique with low complexity. But it has the following pitfall. 

  Only spatial correlation of the pixels inside the single 2D block is considered, and the correlation from the 
pixels of the neighboring blocks is neglected. It results blocking artifacts. If it so, the human interpreter may 

not identify image properly. 

After the mention of Wavelet by Haar in his Ph.D thesis in 1909, Discrete Wavelet Transform (DWT) was used 

in most of the image compression applications as it overcomes the disadvantages of DCT. But it too has the 

following limitations.  

 Computational Complexity 

 Memory Complexity 

 Low image quality 

 Floor operating losses 

 Poor compression ratio 

 Low bit degradation 

Wavelet transforms have received significant attention in many fields, such as mathematics, digital 

signal and image processing, because of their ability to represent and analyze data. The wavelet transform, 

defined by Yves Meyer and J. Lemarie offers good localization in both, space and frequency domains and can 

be implemented by fast algorithms. Since the discrete wavelet transform (DWT) was presented by Mallat, many 

researchers on signal analysis and image compression have derived fruitful results due to its well time-frequency 

decomposition. Recently, a new wavelet construction called lifting scheme, has been developed by Wim 

Sweldens and Ingrid Daubechies [8].  It has other applications, such as the possibility of defining a wavelet-like 

transform that maps integers to integers [9].  This method has gained increasing interest in scientific community, 

due to its reduced computational complexity by first factoring a classical wavelet filter into lifting steps. 

 

III. DESIGN METRICS 
Digital image compression techniques are examined with various metrics. Among those the most 

important one is Peak Signal to Noise Ratio (PSNR) which will express the quality. There exists another 

property which expresses the quality, that is, Mean Square Error (MSE). PSNR is inversely proportional to 

MSE. The other important metric is Compression Ratio, which express the amount of compression embedded in 

the technique. In theory, it was observed that PSNR and Compression ratios are inversely related. The other 

metrics are Encoding Time, Decoding Time and Transforming Time. 

 

3.1 Mean Square Error 

Among the quantitative measures, a class of criteria used often is called the mean square criteria. It 
refers to some sort of average or sum (or integral) of squares of the error between two images.  
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where r(i,j), g(i,j) and b(i,j) represents a color pixel in location(i,j) of the original image, r*(i,j), g*(i,j) and b*(i,j) 

represents color pixel of the reconstructed image and N X N denotes the size of the pixels of these color images.  

where 
2  is the variance of the desired image and 

2

e  is average variance. 

 

3.2 Peak Signal to Noise Ratio 
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Peak Signal to Noise Ratio is defined as the ratio between signal variance and reconstruction error 

variance. Mean Square Error, Peak Signal to Noise Ratio and Compression Ratios are calculated from the 

following expressions.  

                                                     PSNR = 10 
MSE

2
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log                                                           

3.3 Compression Ratio 

Compression ratio is defined as the ratio between the original image size and compressed image size.                    

                           Compression Ratio = 
sizeimageCompressed

sizeimageOriginal




                              

 

3.4 Encoding Time, Decoding Time and Transforming Time 

Any compression system uses one of the encoding techniques to encode the input information. The 

encoding operation is very crucial for the success of the compression system. It involves the representation of 

the input information in a form suitable for storage and transmission. The time required to perform this 

operation is referred to as encoding time. The reverse process to encoding is decoding and the corresponding 

time required to decode an encoded data is decoding time. In general, the information to be compressed will be 

represented in time or spatial domain. To compress the data, it was observed that it is convenient to represent 

the data in frequency domain. Hence the information in time domain needs to be converted into frequency 
domain. For that, one of the transforming techniques will be used. Again it involves some consumption of time. 

This time is referred to as transforming time. These times are measured in seconds. 

 

IV. TRADITIONAL WAVELETS 
4.1 Haar wavelet 

 

Haar Wavelet is defined by  
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In 1910, Haar already used this function for constructing an orthonormal basis in L2(IR) by means of 

dilations and integer translations of a so-called mother function. Besides the orthonormality of a basis, Haar’s 

concept coincides with the wavelet transform and its inversion formula. The Haar wavelet transform can be 

interpreted as a multiscale differential operator of order 1. The Haar wavelet is also the simplest possible 

wavelet. The technical disadvantage of the Haar wavelet is that it is not continuous, and therefore not 

differentiable. This property can, however, be an advantage for the analysis of signals with sudden transitions, 
such as monitoring of tool failure in machines. 

 

4.2 Daubechie wavelet 

The wavelet transform is also easy to put into practice using the fast wavelet transform. Daubechies 

wavelets are widely used in solving a broad range of problems, e.g. self-similarity properties of a signal or 

fractal problems, signal discontinuities, etc. In 1988 Ingrid Daubechies [10] constructed the entire class of 

orthonormal wavelet bases Dbr, r == 1,2, ... , of compactly supported functions using the analogy with the max-

flat filters of signal theory. The choice of the order r defines various Daubechies wavelets that represent a new 

family of special functions. In general the Daubechies wavelets are chosen to have the highest number A of 

vanishing moments, (this does not imply the best smoothness) for given support width N=2A, and among the 

2A−1 possible solutions the one is chosen whose scaling filter has extremal phase. Except the Haar wavelet Dbl 

(formula 3.35) Daubechies wavelets have no explicit expressions and can only be calculated through recursion. 
Daubechies wavelet is more efficient than Haar in analysis and colligation. 

 
Figure 1. Basis Functions of Different Wavelets. 

http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Derivative
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4.3 Biorthogonal Wavelet 

The orthogonality of a wavelet basis is a very restrictive request, it cannot be fulfilled for the odd 
number of dilatation equation coefficients, e.g. the linear spline and matched wavelet. Besides orthogonal 

wavelet bases have very strong asymmetry that is an undesirable property in many applications. If we give up of 

the requirement that the same orthogonal basis is used for the decomposition (analysis) and the reconstruction 

(synthesis), symmetry is possible. The biorthogonal bases can commute roles, so that the tilde functions are used 

in analysis while the dual ones are used in synthesis. The choice depends on the regularity and number of 

vanishing moments for both. It is a well-known fact in the filter theory community that symmetry and perfect 

reconstruction are incompatible (except for the Haar wavelet) when the same FIR filters are used for 

decomposition and for reconstruction process. To circumvent this difficulty two wavelets are introduced instead 

of one. 

 

4.4 Coiflet wavelet 
They were constructed by Ingrid Daubechies as requested by her colleague Ronald Coifman, whom 

they were named after. In order to calculate the initial coefficient sequence of the pyramidal algorithm as simply 

as possible, it is useful to have moments of the scaling function of as high an order as possible equal to zero. 

They are less asymmetrical than the wavelets Dbr. Relative to the support length, Coifr is comparable to the 

wavelets Db3r and Sym3r, while relative to the number of vanishing moments it is comparable to the wavelets 

Db2r and Sym2r. They are used in numerical analysis. The wavelet is near symmetric, their wavelet functions 

have N / 3 vanishing moments and scaling functions N / 3 − 1, and has been used in many applications using 

Caldron-Zygmund Operators. Both the scaling function (low-pass filter) and the wavelet function (High-Pass 

Filter) must be normalised by a factor 
2

1
. Below are the coefficients for the scaling functions for C6-30. The 

wavelet coefficients are derived by reversing the order of the scaling function coefficients and then reversing the 

sign of every second one (ie. C6 wavelet = {−0.022140543057, 0.102859456942, 0.544281086116, 

−1.205718913884, 0.477859456942, 0.102859456942}). Mathematically, this looks like Bk = ( − 1)kCN − 1 − k 

where k is the coefficient index, B is a wavelet coefficient and C a scaling function coefficient. N is the wavelet 

index, ie 6 for C6. 

 

 

4.5 Symlet wavelet 

Symlet wavelets (Symr) represent a modification of the Daubechies wavelets, done to improve their 
symmetry. Still, to retain the simplicity of the Daubechies wavelets, they are only almost symmetrical. They are 

also constructed by the coefficients of the frequency response as there are various ways to group the function to 

the factors )(ˆ wh and )(ˆ wh . By the choice of the frequency response )(ˆ wh  so that all of its roots by module 

are smaller than or equal to one, we arrive at the Daubechies wavelet Dbr. By a different choice we arrive to the 

more symmetry wavelet Symr.  

Thus the other properties of these wavelets are similar to the Dbr wavelet properties. A full symmetry 

cannot be achieved within the frame of the orthonormal wavelet basis with a finite support, other than the Haar 

Dbl wavelet. 

 

4.6 Demeyer Wavelet  

By defining the wavelet and scaling function in the frequency domain by functions with a compact 

support but a greater smoothness, the scaling function and wavelet can belong to the space Coo and can decrease 

faster than the polynomial. Both the wavelet and the scaling function are constructed in the frequency domain 

using trigonometric functions, but so that their Fourier transforms have compact support. The scaling function is 

symmetrical around point 0, while the wavelets are symmetrical around point 1/2. The scaling function and 

wavelet do not have compact supports, but they decrease faster than any" inverse polynomial". This wavelet is 

an infinitely differentiable function. 

 

V. SIMULATION RESULTS 
In this section the simulation results of the said techniques are presented, which are obtained after 

implementing those in MATLB. The design metrics considered are already presented in the previous sections. 

The compression ratio should be maintained with considerable quality or in other way; PSNR should be 

maintained with sufficient size reduction in the memory point of view. The GUI used in the work was given in 

the figure 2. Wide range of medical images, including both MRI and CT scan images were considered. The 

algorithms are implemented in MATLAB. The GUI used in the work was given in the figure 1. The input 
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images are shown in figure 2. The table 1 gives the performance of hand designed wavelet transform on the 

input images. The performance of these wavelet transforms was analyzed and plotted in figure 3. 

 

 
 

Fig. 2. GUI used in MATLAB 

 

 
Fig. 3. Input MRI images 

 

Table 1. Performance of different wavelet transforms on medical images 

 

 

 

 

 

 

 

 
 

 

 

 

 

Image Parameter Haar Daubechie 
Biorthogona

l 
Demeyer Coiflet Symlet 

CT 
CR (bpp) 3.4 1.77 3.05 1.9 2.89 1.88 

PSNR (dB) 24.7 24.3 26.7 24.6 45.5 24.6 

MRI-1 
CR (bpp) 3 2.6 2.7 1.62 2.4 2.7 

PSNR (dB) 24.8 30.9 32.18 30.8 49.8 30.9 

MRI-2 
CR (bpp) 2.9 2.6 2.7 1.61 2.4 2.7 

PSNR (dB) 25.2 31 32.8 31.3 50 31.5 

MRI-3 
CR (bpp) 3.62 3.478 3.53 2.12 3.2 3.57 

PSNR (dB) 23.1 23.74 24.07 23.77 40.0 23.7 

MRI-4 
CR (bpp) 3.03 2.6 2.73 1.63 2.4 2.72 

PSNR (dB) 24.2 30.54 31.39 30.4 49.2 30.4 

MRI-5 
CR (bpp) 3.05 2.6 2.7 1.63 2.46 2.73 

PSNR (dB) 23.9 30.1 31 30.05 48.8 30.42 

MRI-6 
CR (bpp) 3.05 2.69 2.75 1.64 2.47 2.75 

PSNR (dB) 24.7 30.87 32.44 30.62 50.1 30.91 
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Fig. 4. Performance of different wavelet transforms on medical images 

 

VI. Conclusions 
In this paper, the performance of Hand designed wavelets is presented. Haar wavelet, Daubechie 

wavelet, Demeyer wavelet, Coiflet wavelet and Symlet wavelets are considered under Hand designed wavelet 

category. Except Coiflet wavelet, all the Hand designed wavelets produced less PSNR around 30dB and less 

compression ratio around 2bpp. Coiflet wavelet produced high PSNR around 47dB, but at low compression ratio 

in the ranges of only 2bpp. 
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