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 Abstract: In this paper an attempt has been made to derive the lifting scheme for a set of new bi-orthogonal 

wavelets and apply on image compression. Four new bi-orthogonal wavelets are designed by taking different 

basis functions which are selected so as to capture the sharp edges which are common in images. For these 

classical wavelets, lifting versions are calculated and presented in this paper. The lifting step calculation is 

simplest among the schemes in related literature. From the designed wavelet filters, the poly-phase matrix is 

written and decomposed the matrix into a form from which lifting steps are directly available. To incorporate 

coding Set Partitioning In Hierarchical Trees (SPIHT) algorithm is used.  The Peak Signal to Noise Ratio 

(PSNR), Compression Ratio (CR), Transforming Time (TT), Encoding Time (ET) and Decoding Times (DT) are 

calculated. It was found that the compression performance of new classical wavelets is a little better than that of 

existing classical/first generation wavelets and that of new lifting based wavelets is far better than that of 

existing classical wavelets and also existing lifting based wavelets. 

Keywords: Lifting scheme, basis functions, compression, poly-phase representation 

 

I. INTRODUCTION  
Lifting Scheme which was first introduced by Sweldens is the tool to construct wavelet in spatial 

domain entirely. It is the key technology to build second generation wavelet. Lifting Scheme can implement 

wavelet transform which can't be translated and dilated from one function. Moreover, it can lead to a fast, fully 

in-place implementation of wavelet transform[l][2]. This algorithm is faster, simpler and easier than the Mallat 

algorithm. It's also the one recommended by JPEG2000 for its good performance. All parameters of Lifting 

Scheme can be modified, but not affect the properties of perfect reconstruction after transform. The benefit of 

using lift scheme for wavelet transform is that it decomposes the wavelet filter into simple step, and each step is 

reversible. The reconstruct process is the reversed decomposition in lifting. The classical wavelet transforms are 

linear, and their constructions are often based on the Fourier transform. However, it is changed after Sweldens[l] 

proposed the lifting scheme. The lifting scheme is a flexible tool for construction of new wavelets from existing 

ones. A general lifting scheme, illustrated in Figure 1, comprises three main steps: split, predict and update.  

The three steps form a lifting stage. Daubechies and Sweldens [3] have shown that all classical 

wavelets decompositions can be implemented using the lifting scheme. The predict and update operators can 

reverse the order [4]. It is very useful of the reversion of the order sometimes when the update happens before 

predict. Many people proposed various kinds of nonlinear wavelets at the basis of lifting scheme [5][6]. 

However, in all these approaches, a severe limitation is that the filter structure is fixed, and thus cannot cope 

with the sudden changes in the input signal.  

 
Fig. 1 Lifting Scheme 

Since more than a decade, a number of papers on lifting, on its variations and extensions are published. 

In [7], a modified lifting scheme for computing the approximation and detailed coefficients of DWT is 

proposed. The modified equations use, right shift operators and 6-bit multipliers.  
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The hierarchy levels in computation are reduced to one; thereby minimizing the delay and increasing 

throughput. In [8], efficient, and simple design, of multilevel two dimensional discrete wavelet transform (2-D 

DWT) modules for image compression was presented. The proposed architecture is based on lifting scheme 

approach, using the (5/3) wavelet filter, aiming to reduce the hardware complexity and size of the on-chip 

memory. In [9], a high speed lifting based 3D (DWT) VLSI architecture is proposed. The architecture was 

arranged in efficient way to speed up and achieve higher hardware utilization. In [10], a framework for 

constructing adaptive wavelet decompositions using the lifting scheme was proposed. A major requirement is 

that perfect reconstruction is possible with better quality. Once coefficients are generated, the best directional 

window sizes are determined to obtain the best reconstructed image, which can be considered as an optimization 

task. In [11], an algorithm for color medical image compression based on a biorthogonal wavelet transform CDF 

9/7 coupled with SPIHT coding algorithm was proposed.  

In [12], Bi-orthogonal wavelets are constructed using lifting scheme that makes optimal use of both 

high pass and low pass filter values, and consequently addition and shift operations are performed on the 

resulting wavelet coefficients. It projects the advantages of IWT using LS used in real time compression of both 

still and color images involving non smooth domains or curves. In this paper, the wavelets proposed in [13] are 

considered, and for these wavelets the lifting scheme is calculated and so generated lifting wavelets are applied 

on image for compression. Because of the selection of the basis functions for these wavelets, the performance is 

found to be the best among the wavelets in literature. The rest of the paper is organized as follows. The next 

section presents lifting scheme and signal representation with lifting scheme. It also presents the poly-phase 

representation of DWT and lifting scheme. The section III presents the calculation of lifting steps for the new 

biorthogonal wavelets. The section IV gives the simulation results of proposed wavelets and a brief review of 

the performance of different wavelets in literature. 

 

II. LIFTING SCHEME 
Let us consider the sequence of samples of signal x(k). Z transform of this sequence can be given as, 
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Let us consider finite impulse response (FIR) filter h having filter coefficients h={hk1,. . . . ., hk2}. Z transform 

of this filter is Laurent polynomial with degree |k2-k1| given by,    
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Filtering of signal x(k) by filter h can be easily described in z transform by the (3) 

Y(z) = H(z)X(z)          (3) 

Sub-sampling of the signal x(k) is corresponding to keeping only the even samples i.e. xe=x(2k). Z transform of 

such sub-sampled signal can be given as 
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Similarly 
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From (5) and (6), it is clear that the signal X(z) can be decomposed into Xe(z
2
) and Xo(z

2
) as given in (7). 
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Now let us consider that signal X(z) decomposed into two parts using high pass filter g and low pass filter h, 

then it can be represented as: 
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Sub-sampling step corresponds to  
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The above equations can be written in matrix form as 
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In this case we first calculate all the coefficients and then throw away half of the work done. It will be more 

efficient if we perform sampling before filtering, mean that we compute only even part of lp and hp. 
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Similarly, 
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Let us denote output of sub-sampler and low pass filter as λ(z) and output of sub-sampler and high pass filter as 

γ(z). Then above two equations can be represented as, 
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Where, P(z) is a poly-phase matrix is given by 
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In order to achieve perfect reconstruction, filter h and g must be complementary filters that will result unity 

determinant of poly-phase matrix. Polyphase matrix corresponding to lazy wavelet transform will be 
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This poly-phase matrix will split input samples into odd and even set. 

 

III. CALCULATION OF LIFTING STEPS FOR NEW WAVELETS  
In this section the lifting steps for the new orthogonal wavelets for which the basis functions are shown 

in figure 2. In the first wavelet the decomposition functions are somewhat similar to that of Haar. But the value 

during non-zero period is not constant; it is decaying from 1 to 0.9. The reconstruction function is smooth and it 

is a sinusoidal variation. In the second wavelet, the same reconstruction stage as it is in first wavelet is used. The 

decomposition stage is a sharp and short wave that is supposed to capture dissimilar neighbourhood values in 

the input data. The wavelet filters for these wavelets are calculated and for simplicity let  

h = { h-4, h-3, h-2, h-1, h0, h1, h2, h3, h4} and   = {  -4,  -3,  -2,  -1,  0,  1,  2,  3,  4} 

For the proposed wavelets h-4=0,  -4=0. 
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Fig. 2 New Wavelets: phi and psi functions of NBior1, NBior2, NBior3 and NBior4 

 

We obtain the Poly-phase matrix P(z) by applying circular convolution to the elements of P‟(z). Therefore 
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Now P(z) can be decomposed into two matrices as 
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From equations (17) and (18),  
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One can obtain S(z) and )(0 zH
New

by dividing H0(z) by He(z). S(z) will be the quotient and )(0 zH
New

will be 

the remainder. Similarly )(0 z
New

 will be the remainder in the division  0(z) by  e(z). 

S(z),  )(0 zH
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 can calculated and given by 
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Where the C1, C2, C3, …., C9 are constants  in terms of wavelet filter coefficients. The equation (18) becomes, 
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Now the first matrix in the above equation can further be decomposed into two matrices as, 
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From equation (22), 
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As we have calculated S(z),  )(0 zH
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we can calculate T(z),  )(zH
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performing divisions. The T(z),  )(zH
New

e and )(z
New

e values are given by, 

                                                  

1

76

1

54

1

321

)(

)(

)(













zAAz

zAAzH

zAAzAzT

New

e

New

e



                                                (24) 

Now the equation (22) becomes 
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By using the equations (21), (22) and (25) the poly-phase matrix P(z) can be written in a form, so that the lifting 

steps both primal and dual lifting steps can be calculated. 
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For the wavelet NBior1, the wavelet coefficients, the constants A1 to A9 and C1 to C7 are listed in the table 1, 2 

and 3 respectively. 

 

TABLE I: Wavelet Coefficients of the Wavelet NBior1 

h(n)  (n) 

0 0 

0.1426 0.0532 

0.8244 0.0761 

-0.0929 0.2275 

-0.4693 -0.1043 

0.1043 -0.4693 

0.2275 0.0929 

-0.0761 0.8244 

0.0532 -0.1426 

 

TABLE II: The Constants C1 to C9 of the Wavelet NBior1 

C1 0.1729 

C2 -0.3224 

C3 -0.506 

C4 -0.2495 
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C5 0.1323 

C6 0.0269 

C7 0.8262 

C8 0.001 

C9 -0.0721 

 

TABLE III: The Constants A1 to A7 of the Wavelet NBior1 

A1 -3.3046 

A2 0.1292 

A3 -1.2 

A4 0.2084 

A5 0.0323 

A6 -0.132 

A7 -0.0866 

 

Hence the lifting scheme for the wavelet NBior1 can be written as follows.  

Forward Wavelet Transform: 

Split    :  λk  x(2k) 

       γk  x(2k+1) 

Dual Lifting (Predict)  :  γk  γk + [-3.3046 γk-1 + 0.1292 γk  -1.2 γk+1] 

Primal Lifting (Update)  :  λk  λk + [0.1729 λk+1  -0.3224 λk+2  -0.506 λk+3] 

 

Inverse Wavelet Transform: 

Inverse Primal Lifting (Update) :  λk  λk - [0.1729  λk+1  -0.3224 λk+2  -0.506 λk+3] 

Inverse Dual Lifting (Predict) :  γk  γk - [-3.3046 γk-1 + 0.1292 γk -1.2 γk+1]  

Merge    :  x(2k)  λk 

       x(2k+1)  γk 

 

IV. SIMULATION RESULTS AND DISCUSSION 
In this section, the simulation results of the proposed techniques are presented. The proposed 

techniques are implemented in MATLAB. The figure 3 shows the GUI used to provide an interface to the user. 

Before presenting the compression results of the proposed techniques, a mention of the results of existing 

traditional, new first generation and lifting version of existing traditional wavelets would be appropriate.  

 
Fig. 3 The GUI used in implementing the proposed Wavelets 

 

The compression results of existing traditional wavelets are given in Tables IV and V. In table IV, the 

PSNR and CR with four standard images are shown. In table II, the average values of CR, PSNR as well as 

PSNR*CR are given.  
 

TABLE IV: Compression performance of different wavelets on standard images 

Image Lena Mandrill Pepper Rice 
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TABLE V: Average values of PSNR, CR and PSNR*CR 

Wavelet PSNR CR PSNR*CR 

Haar 37.53 2.51 94.29 

db5 37.83 2.48 93.82 

db10 35.56 2.30 81.79 

bior1.3 31.78 2.39 75.86 

bior2.2 34.95 2.55 89.20 

coif1 34.00 2.51 85.16 

coif3 37.92 2.36 89.31 

sym2 29.33 2.54 74.58 

sym3 34.61 2.54 87.74 

Dmeyer 35.23 1.37 48.18 

 

In Tables VI and VII the simulation results of Lifting version of traditional wavelets are presented. 
 

TABLE VI: Performance of Lifting based Wavelets 

  Lena Barbara Mandrill Cameraman 

Lifting Wavelets CR  PSNR CR  PSNR CR  PSNR CR  PSNR 

Haar 3.98 32.83 3.40 31.30 3.69 25.13 2.28 37.31 

Daubechies 3.26 33.46 3.70 32.06 3.88 25.61 2.32 37.28 

Bi-orthogonal 3.28 33.43 4.18 21.71 3.91 25.54 2.33 37.18 

CDF 3.96 32.74 3.86 26.14 3.67 25.00 2.27 37.18 

Symlet 3.24 33.21 3.64 31.60 3.84 25.23 2.31 36.91 

 

TABLE VII: Average PSNR, CR and PC of Lifting Wavelets 
  PSNR CR PC 

Haar 31.64 3.34 105.62 

Daubechies 32.10 3.29 105.58 

Biorthogonal 29.46 3.43 100.97 

CDF 30.26 3.44 104.07 

Symlet 31.74 3.26 103.44 

 

In Table VIII, the simulation results of new traditional wavelets are given. 

Wavelet PSNR CR PSNR CR PSNR CR PSNR CR 

Haar 37.91 2.57 35.85 2.13 38 2.65 38.35 2.7 

db5 38.26 2.6 35.75 2.05 38.37 2.71 38.95 2.56 

db10 36.54 2.43 31.26 1.91 36.53 2.47 37.91 2.39 

bior1.3 33.15 2.5 28.09 2.07 31.85 2.53 34.01 2.45 

bior2.2 35.75 2.73 29.43 2.16 36.36 2.64 38.25 2.68 

coif1 35.19 2.62 29.14 2.1 34.3 2.73 37.35 2.57 

coif3 38.32 2.47 35.8 1.94 38.49 2.58 39.08 2.43 

sym2 30.97 2.65 27.9 2.13 29.34 2.78 29.12 2.61 

sym3 35.51 2.65 29.52 2.11 35.35 2.77 38.06 2.61 

Dmeyer 36.21 1.46 29.72 1.12 35.92 1.46 39.08 1.43 
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TABLE VIII: Average PSNR, CR and PC values 

 
PSNR CR PC 

NBior1 33.52 3.24 108.67 

NBior2 31.53 3.20 101.14 

NBior3 28.56 2.95 84.45 

NBior4 32.20 2.92 94.33 

 

Because of the sharp edge features of the basis functions used in new traditional wavelets, the 

performance of the new wavelets will be better than the mentioned wavelets. The performance of the lifting 

version of new wavelets is given in the tables   IX to XIX. 
 

TABLE IX: The performance of new lifting based Biorthogonal wavelets on „cameraman.jpg‟ 
Compression results of New Lifting based Wavelets with 
'cameraman.jpg' 

  NBior1 NBior2 NBior3 NBior4 

PSNR (dB) 41.2472 40.6959 39.6476 41.0777 

CR (bpp) 11.7668 11.7814 11.4025 11.3741 

TT (sec) 0.53883 0.25545 0.25193 0.27299 

ET (sec) 5.9006 4.9326 5.2007 5.4897 

DT (sec) 1.4152 1.184 1.3906 1.3235 

TABLE X: The performance of new lifting based Biorthogonal wavelets on „football.jpg‟ 
Compression results of New Lifting based Wavelets with 

'football.jpg' 

  NBior1 NBior2 NBior3 NBior4 

PSNR (dB) 42.7361 42.3193 41.5113 43.1308 

CR (bpp) 11.5242 11.1549 11.1471 11.1019 

TT (sec) 0.29303 0.45362 0.28082 0.29622 

ET (sec) 5.406 5.7733 5.8627 5.8602 

DT (sec) 1.0977 1.1764 2.1292 2.2292 

 

TABLE XI: The performance of new lifting based Biorthogonal wavelets on „greens.jpg‟ 
Compression results of New Lifting based Wavelets with 

'greens.jpg' 

  NBior1 NBior2 NBior3 NBior4 

PSNR (dB) 40.1453 39.6106 38.5565 40.4767 

CR (bpp) 10.9127 10.9152 10.4133 10.3918 

TT (sec) 0.2476 0.26175 0.24888 0.27174 

ET (sec) 6.0507 5.9467 6.2758 6.2551 

DT (sec) 1.6444 1.8216 2.4544 2.4682 

 

TABLE XII: The performance of new lifting based Biorthogonal wavelets on „lena.jpg‟ 
Compression results of New Lifting based Wavelets with 

'lena.jpg' 

  NBior1 NBior2 NBior3 NBior4 

PSNR (dB) 42.6359 42.0561 40.9888 42.0904 

CR (bpp) 12.4891 12.5122 11.839 11.7392 

TT (sec) 0.27342 0.27033 0.25686 0.25728 

ET (sec) 4.6752 4.7516 5.4207 5.5004 

DT (sec) 0.96943 1.0448 1.1687 1.2546 

 

TABLE XIII: The performance of new lifting based Biorthogonal wavelets on „pepper.jpg‟ 
Compression results of New Lifting based Wavelets with 

'pepper.jpg' 

  NBior1 NBior2 NBior3 NBior4 

PSNR (dB) 42.4042 41.6713 40.4042 41.5272 

CR (bpp) 12.7051 12.7077 11.9301 11.8879 

TT (sec) 0.37603 0.26233 0.62823 0.3107 
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ET (sec) 4.5708 4.7143 5.0368 4.704 

DT (sec) 1.0727 1.1106 1.4258 1.224 
 

TABLE XIV: The performance of new lifting based Biorthogonal wavelets on „rice.jpg‟ 
Compression results of New Lifting based Wavelets with 

'rice.jpg' 

  NBior1 NBior2 NBior3 NBior4 

PSNR (dB) 43.0267 41.879 41.0919 42.0703 

CR (bpp) 12.8023 12.2914 12.1023 12.0212 

TT (sec) 0.24464 0.24973 0.21718 0.24305 

ET (sec) 4.3762 4.6109 4.8759 4.7946 

DT (sec) 0.93959 0.91315 1.1036 1.2093 

TABLE XV: The performance of new lifting based Biorthogonal wavelets on „zebra.jpg‟ 
Compression results of New Lifting based Wavelets with 

'zebra.jpg' 

  NBior1 NBior2 NBior3 NBior4 

PSNR (dB) 40.855 40.1864 38.9937 40.7237 

CR (bpp) 11.9819 11.9869 11.0564 11.0126 

TT (sec) 0.26054 0.25994 0.21827 0.24726 

ET (sec) 4.8664 4.8799 5.6967 5.5721 

DT (sec) 1.1232 1.1507 1.5818 1.5782 

TABLE XVI: The performance of new lifting based Biorthogonal wavelets on „office_1.jpg‟ 
Compression results of New Lifting based Wavelets with 

'office_1.jpg' 

  NBior1 NBior2 NBior3 NBior4 

PSNR (dB) 44.6101 44.2936 43.4804 44.5424 

CR (bpp) 13.802 13.8209 13.2791 13.2769 

TT (sec) 0.25462 0.26105 0.28212 0.26427 

ET (sec) 4.2749 4.2233 4.565 4.6896 

DT (sec) 0.69567 0.68591 0.78215 0.80255 
 

TABLE XVII: The performance of new lifting based Biorthogonal wavelets on „office_2.jpg‟ 

Compression results of New Lifting based Wavelets with 'office_2.jpg' 

  NBior1 NBior2 NBior3 NBior4 

PSNR (dB) 38.3515 38.3465 38.1955 38.2572 

CR (bpp) 12.5451 12.5532 12.0143 11.9972 

TT (sec) 0.30019 0.25463 0.3454 0.27155 

ET (sec) 4.4015 4.7408 4.8468 5.0304 

DT (sec) 0.30089 0.30664 0.31414 0.38754 

 

TABLE XVIII: The performance of new lifting based Biorthogonal wavelets on „office_3.jpg‟ 

Compression results of New Lifting based Wavelets with 'office_3.jpg' 

  NBior1 NBior2 NBior3 NBior4 

PSNR (dB) 37.8458 37.8268 37.5818 37.7141 

CR (bpp) 12.1069 12.1144 11.5888 11.5751 

TT (sec) 0.24237 0.26591 0.25372 0.27279 

ET (sec) 4.7295 4.7836 5.1497 5.2466 

DT (sec) 0.35337 0.40341 0.36114 0.36395 

 

TABLE XIX: The performance of new lifting based Biorthogonal wavelets on „office_4.jpg‟ 

Compression results of New Lifting based Wavelets with 'office_4.jpg' 

  NBior1 NBior2 NBior3 NBior4 

PSNR (dB) 37.827 35.7337 37.4934 37.6594 
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CR (bpp) 11.9418 11.5173 11.4252 11.4248 

TT (sec) 0.25514 0.26339 0.30054 0.28447 

ET (sec) 5.0341 5.3275 5.5119 5.7407 

DT (sec) 0.4152 0.33625 0.41154 0.44966 

 

The average values of PSNR, CR and PC [15] with the new lifting based wavelets are given the table XX.  

 

TABLE XX: Average values of PSNR, CR and PC with new lifting based wavelets 

  PSNR CR PC 

Nbior1 41.15395 12.23435 503.492 

Nbior2 40.41993 12.12323 490.02 

Nbior3 39.81319 11.65437 463.9978 

Nbior4 40.84272 11.61843 474.5282 

 

The figures 4, 5 and 6 give the comparison of performance of existing traditional, new traditional, lifting version 

of traditional, 5/3, 9/7 lifting based [14] and lifting version of new biorthogonal wavelets.    

 

 
Fig. 4 The PSNR values obtained with various Wavelets 
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Fig. 5 The CR values obtained with various Wavelets 

 

 
Fig. 6 The PC values obtained with various Wavelets 

 

A number of images are considered to have a subtle comparison of the performance of different 

wavelets as already mentioned. The PSNR values ranges between 30 to 40dB. The CR ranges between 1.5 to 12 

bpp. The CR with all traditional wavelets is very low, less than 4bpp. With 5/3 and 9/7 lifting based wavelets it 

between 8 and 10bpp. With the proposed wavelets the CR is over 11bpp. 

 

V. CONCLUSIONS 
In this paper an attempt has been made to propose a simple procedure to calculate lifting steps for an 

arbitrary wavelet as well as new set of lifting based wavelets. The procedure presented in this paper is the 

simplest among the previous and current literature. First of all, new set of functions are taken with short duration 

and sharp edges. The chosen functions are used as the basis functions for biorthogonal wavelets. By using the 

lifting step calculation given in the section III, the lifting scheme was facilitated for the new biorthogonal 

wavelets. These wavelets are used to represent a digital image so as to make things easy for the SPIHT to code 

the image. The performance of SPIHT is verified with various wavelets, i.e., existing traditional wavelets, new 

first generation wavelets‟, lifting version of existing traditional wavelets, 5/3 and 9 /7 lifting based wavelet 

transforms and the new lifting based wavelets, i.e., the lifting version of new first generation wavelets. To 

compare the performance of all these wavelets, the new design metric PC has been used. Among the existing 

traditional wavelets haar and db5 has produced the best performance for which the PC is just below 95. With the 

new first generation wavelets the PC has crossed 100 and it is 108.67 for NBior1, 101.14 for NBior2. The lifting 

version of existing traditional wavelets has shown a similar performance. Lifting version of haar produced 

105.62 PC, that of daubechies a 105.58, biorthogonal 100.97, CDF 104.07, and Symlet 103.44. The popular 5/3 

lifting based wavelet transform has produced a PC of 328.277, and the 9/7 lifting based wavelet transform 
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354.52. The new lifting based wavelets proposed in this paper have produced even higher PC value with NBior1 

touching 500. 
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