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Abstract: This paper provides a new technique for lossy multispectral images compression at very high data 

rates. Image compression is becoming more and more important, as new multispectral instruments are going to 

generate very high data rates due to the increased spatial and spectral resolutions. The Lossless compression 

does not provide a sufficient degree of data volume reduction to meet the bandwidth requirements of the 

downlink channel, so a lossy approach is the only possible solution. Multispectral data exhibits a large spectral 

correlation. Many techniques have been proposed for multispectral image data. Mainly in all the compression 

techniques to minimize the intra-band and inter-band correlation, some of them do in a single step and others 

do in a two-step transformation followed by an encoding scheme to eliminate the statistical redundancy or to 

give a desired bit-rate at low compression ratios based on the wavelet transform, where the spatial and the 

spectral redundancy are removed simultaneously. At higher compression ratios, a high quality wavelet based 

method in the spatial dimensions combined with the Improved Set Partitioning Hierarchical Trees (ISPHIT) in 

the spectral dimension gives the best results. 
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I. Introduction 
Multispectral image compression algorithms can be roughly categorized by how they exploit the 

redundancies along the spatial and spectral dimensions. A hyper/multispectral imaging system splits the light 

spectrum into more than three frequency bands (dozens to hundreds) and records each of the images separately 

as a set of monochrome images. This type of technique increases the number of acquisition channels in the 

visible spectrum and expands channel acquisition to the light that is outside the sensitivity of the human eye. 

Such systems offer several advantages over conventional RGB imaging and have, therefore, attracted increasing 

interest in the past few years. However, multispectral uncompressed images, in which single image band may 

occupy hundreds of megabytes, often require high capacity storage. Compression is thus necessary to facilitate 

both the storage and the transmission of multispectral images. The simplest method for compressing 

multispectral data is to decompose the multispectral image into a set of monochrome images, and then to 

separately compress each image using conventional image compression methods. Other multispectral 

compression techniques concentrate solely on the spectral redundancy. However, the best compression methods 

exploit redundancies in both the spatial and spectral dimensions. As with monochrome image compression, 

multispectral image compression algorithms fall into two general categories: lossless and lossy. In lossless 

compression schemes, the decoded image is identical to the original. This gives perfect fidelity but limits the 

achievable compression ratio. For many applications, the required compression ratio is larger than can be 

achieved with lossless compression, so lossy algorithms are used. Lossy algorithms typically obtain much 

higher compression ratios but introduce distortions in the decompressed image. Lossy compression algorithms 

attempt to introduce errors in such a way as to minimize the degradation in output image quality for a given 

compression ratio. In fact, the rate distortion curve gives the minimum bitrates (and hence maximum 

compression) required to achieve a given distortion. If the allowed distortion is taken to be zero, the resulting 

maximum compression is the limit for lossless coding. The limit obtained from the theoretical rate distortion 

curve can be useful for evaluating the effectiveness of a given algorithm. While the bound is usually computed 

with respect to mean squared error (MSE) distortion, MSE is not a good measure of quality in all applications. 

However, usages of multispectral data are dependent mostly on rich spectral information contained in such 

images. So a practical algorithm for multispectral data should preserve spectral characteristics of the data while 

working in a lossy manner and maximize the gain.  

           The two-dimensional image coding algorithms attempt to transform the image data so that the 

transformed data samples are largely uncorrelated. The samples can then be quantized independently and 

entropy coded. At the decoder, the quantized samples are recovered and inverse transformed to produce the 
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reconstructed image. The multi spectral images are shown in Fig 1. The recent approaches to lossless 

multispectral compression of high spectral resolution images include transform-based, prediction based and 

vector quantization methods [1] and image data based on prediction tree was given by Memon et al. [2]. The 3D 

CALIC (context-based adaptive lossless image codec) [2] was also proposed. Zhang and Yan [3] changed the 

definition of the four neighbourhood model of prediction tree and gave side neighbourhood minimum absolute 

weight prediction tree. Later, Wu and He [4] made an improvement on the method of prediction tree by setting 

up adaptive predictor aiming at multispectral images’ statistic spectral redundancy. The prediction estimate uses 

two pixels in the previous bands in the same spatial position as the current pixel. By comparison, Rizzo et al. [5] 

gave adaptive least-squares optimized prediction technique called spectrum oriented least squares (SLSQ). The 

prediction coefficients can be computed using an offline procedure on training data. The remainder of this paper 

is organized as follows. Section II briefly describes the Super Resolution Image. Section III introduces a 

Discrete Wavelet Decomposition. Section IV will discuss the ISPIHT Algorithm based compression technique 

for Multispectral image compression. Section V presents performance Evaluation and qualitative and 

quantitative experimental results. Section VI concludes with some remarks. 

 

 
    

 
Fig 1. Remotely sensed multispectral image 

a) Hong Kong city  b) AVIRIS Image 

 

II. Image Super- Resolution 
An image super-resolution [6], [7] is obtained using a generic image gradient profile prior, which is a 

novel parametric approach for describing the shape and the sharpness of the image learned from a large number 

of natural images.  

           Super-resolution is to estimate a hi-resolution (HR) image from a low-resolution (LR) input. There are 

mainly three categories of approach for this problem: interpolation based methods, reconstruction based 

methods, and learning based methods. The interpolation based methods are simple but tend to blur the high 

frequency details. The reconstruction based methods enforce a reconstruction constraint which requires that the 

smoothed and down-sampled version of the HR image should be close to the LR image. The learning based 

methods “hallucinate” high frequency details from a training set of HR/LR image pairs. The learning based 

approach highly relies on the similarity between the training set and the test set.  

 To design a good image super-resolution algorithm, the essential issue is how to apply a good prior or 

constraint on the HR image because of the ill-posedness of the image super-resolution. Generic smoothness 

prior and edge smoothness prior are two widely used priors. 

 

 
Fig 2. Gradient Profile. 

(a)Two edges with different sharpness. 
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(b)Gradient maps (normalized and inverted magnitude) of two rectangular regions in (a). p(x0) is a gradient 

profile passing through the edge pixel (zero crossing pixel) x0, by tracing along gradient directions (two sides) 

pixel by pixel until the gradient magnitude does not decrease at x1 and x2.  

 

(c) 1D curves of two gradient profiles. 

The gradient profile is a 1-D profile along the gradient direction of the zero-crossing pixel in the image. 

The gradient profile prior is a parametric distribution describing the shape and the sharpness of the gradient 

profiles in natural image. One of our observations is that the shape statistics of the gradient profiles in natural 

image is quite stable and invariant to the image resolution. With this stable statistics, we can learn the statistical 

relationship of the sharpness of the gradient profile between the HR image and the LR image. Using the learned 

gradient profile prior and relationship, we are able to provide a constraint on the gradient field of the HR image. 

Combining with the reconstruction constraint, we can recover a hi-quality HR image. 

 

A. Gradient Profile Prior 

Previous natural image statistics characterizes the marginal distribution of the image gradients over the 

whole image. The spatial information is discarded. Instead, we study the image gradients along local image 

structures and the statistical dependency of the image gradients between the HR image and the LR image. 

Gradient profile and its sharpness 

Denote the image gradient as   ∇I=m . N, where 'm' is the gradient magnitude and 'N' is the gradient 

direction. In the gradient field, we denote the zero crossing pixel which is the local maximum on its gradient 

direction as edge pixel Fig 2(a) is two image blocks containing two edges with different sharpness. Fig 2(b) are 

corresponding gradient (magnitude) maps. The pixel x0 in Fig 2(b) is a zero crossing or edge pixel. Starting 

from x0, we trace a path along the gradient directions (two-sides) pixel by pixel until the gradient magnitude 

does not decrease anymore. 

The 1-D path p(x0) is called as gradient profile. Fig 2. (c) is 1D curves of two gradient profiles. We measure the 

sharpness of the gradient profile using the square root of the variance (second moment): 
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xm and d(x, x0) is the curve length of the gradient profile between x and x0. Sharper 

the image gradient profile, the smaller the variance 'σ' is and we call this variance as the profile sharpness. 

Profile sharpness estimation 

Individually estimating the sharpness for each gradient profile is not robust due to the noise. To have a better 

estimation, we apply a global optimization to enforce the consistency of neighbouring profiles as follows.   First, 

we construct a graph on all edge pixels. The graph node is the edge pixel and the graph edge is the connection 

between two neighbouring edge pixels within a pre-defined distance (5 pixels). The edge weight wij for each 

clique of two connected nodes i and j is defined as, 
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Where the first term in the exponent is the gradient similarity and the second term is Euclidean distance 

between i and j. For each node i, we individually estimate its sharpness σi. Then, we minimize the following 

energy to estimate the sharpness of all edge pixels: 
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i. This energy can be effectively minimized because it is an Gaussian MRF model, in which γ=5, ζ1=0.15, and 

ζ2=0.08 in our implementation. 

 

B. Distribution Gradient profile prior 

The regularity of the gradient profiles in natural image can be investigated by distribution of the 

gradient profile. The general exponential family distribution, i.e. Generalized Gaussian Distribution (GGD)  is 

defined as, 
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the scaling factor which makes the second moment of GGD equal to  σ
2
 . Therefore, σ  can be directly estimated 

using the second moment of the profile.  λ  is the shape parameter which controls the overall shape of the 

distribution. Using Kullback - Leibler (KL) divergence to measure the fitting error, we estimate the optimal λ by 
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where  σp  is the variance of p, which is one profile in the set Ω.      

Compute the average KL divergences on four profile sets   Ω1  , Ω2, Ω3, Ω4, by varying the shape 

parameter λ. As we can see, the optimal shape parameter is about 1.6 for all down-sampling factors. The shape 

parameter χ
2
 is stable across different resolutions, which means that the gradient profile distribution is resolution 

independent in natural image.  

We use Pearson’s χ
2
 hypothesis-tests to measure the goodness of our fitted distributions. The χ

2
hypothesis-

test for a gradient profile p(x0) is defined as 
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the hypothesis that the gradient profile follows the 

fitted gradient profile prior cannot be rejected. 

 

III. Selection  of Representative Spectral Bands 
In the proposed method, the representative spectral bands which contain maximum information are 

selected. To select these representative bands, the entropy of each band, and spectral correlation between the 

adjacent bands are calculated, and then the bands having maximum entropy and de-correlation are selected. 

These representative bands are then transformed by using discrete wavelet transform and encoded using 

Improved SPIHT algorithm. 

In this work, we use DWT for multispectral image compression. We make an assumption that spectral 

correlation exists in wavelet coefficients of multispectral image. This scheme exploits the spatial and spectral 

correlation in the biorthogonal subclasses of multispectral image. The proposed scheme consists of two steps. 

First, all bands of multispectral image are analyzed independently using two-dimensional  Discrete Wavelet 

Transform. Then, the wavelet coefficients are quantized with Improved SPHIT. 

 

A. Subband Coding 

In subband coding, an image is decomposed into a set of band limited components, called sub bands, 

which can be reassembled to reconstruct the original image without error. Fig 3 shows the components of two-

band subband coding and decoding system. Since the bandwidth of the resulting sub bands y0 (n) or y1 (n) is 

smaller than the original signal x (n), the sub bands can be down sampled without loss of information. 

Reconstruction of the original signal is accomplished by up sampling, filtering, and summing the individual sub 

bands. 

 

 
Fig 3. Two-band filter bank for one-dimension subband coding and decoding. 
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According to the Z-transform and its sampling theorem, we can express the output as 
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Where the second component which contains the z dependence represents the aliasing introduced by 

the down sampling-up sampling process. 

For error-free reconstruction of the input, that is, ˆ ( ) ( )X z X z  we impose the following conditions: 
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Eq. (9) reveals that the analysis and synthesis filter are cross-modulated. For finite impulse response (FIR) 

filters and ignoring the delay, we can get 
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Thus, FIR synthesis filters are cross-modulated copies of the analysis filters with one (and only one) 

being sign reversed. 

Eq. (9) can also be used to demonstrate the biorthogonality of the analysis and synthesis filters. That is 
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Filter banks satisfying this condition are called biorthogonal. Moreover, the analysis and synthesis filter 

impulse responses of all two-band, real-coefficient; perfect reconstruction filter banks are subject to the 

biorthogonality constraint. 

One solution that satisfies the biorthogonality requirement of Eq. (12) and used in the development of 

the fast wavelet transform are called orthonormal. It require 

( ), ( 2 ) ( ) ( ), , {0,1}i jg n g n m i j m i j    
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which defines orthonormality for perfect reconstruction filter banks. The relationship of the four filter is 

1 0( ) ( 1) (2 1 )ng n g K n                              (14) 
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From Eq. (15) 2K denotes the number of coefficients in each filter. As can be seen, g1 (n) is related to 

g0 (n) and both h0 (n) and h1 (n) are time-reversed versions of g1 (n) is related to g0 (n), respectively. 

 

B. Multi Resolution Analysis 

In multiresolution analysis, a scaling function is used to create a series of approximations of a signal. A 

wavelet function is used to encode the difference in information between adjacent approximations. 

A signal f (x) can be analyzed as a linear combination of expansion functions 
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k
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Where the αk 
is real-valued expansion coefficients and the Øk (x) are real-valued expansion functions. If the 
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k x
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Ø  are called basis functions. The function space of the expansion set (Øk 

(x)) is  
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And f(x) Є V means that f(x) is in the span of (Øk (x)) and can be written in the form of Eq.  (17). The 

coefficients αk are computed by taking the integral inner products of the dual ( )k x ’s and function f (x). That is  

*( ), ( ) ( ) ( )k k kx f x x f x dx                             (18) 

If (Øj,k(x)) is an orthonormal basis for V, then ( ) ( )k kx x  . If (Øk (x)) are not orthonormal but is an 

orthogonal basis for V, then the basis functions and their duals are called biorthogonal. That is  
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Now consider the set of expansion functions (Øj,k (x)) composed of integer translations and binary 

scaling of the real, square-integral function Ø(x) where 
/ 2

, ( ) 2 (2 )j j

j k x x k                               (20) 

     for k Є Z and Ø(x) Є L
2
 (R). Because the shape of Øj,k(x) changes with j, Ø(x) is called a scaling 

function. We denote the subspace spanned over k for any j as 

 , ( )j j k
k

V span x                             (21) 

The scaling function has four fundamental requirements of multiresolution analysis: 

1. The scaling function is orthogonal to its integer translates. 

2. The subspaces spanned by the scaling function at low scales are nested within those spanned at higher scales. 

That is 
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2. Any function can be represented with arbitrary precision. That is, 
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The expansion functions of any subspace can be built from double-resolution copies of themselves. That is,  
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where the hØ (n) coefficients are called scaling function coefficients. Given a scaling function that 

meets the multiresolution requirements, we can define a wavelet function ψ (x) that spans the difference 

between any two adjacent scaling subspaces, Vj and Vj+1. We can define the set (ψ j, k (x)) of wavelets 
/ 2

, ( ) 2 (2 )j j
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Fig 4. The relationship between scaling and wavelet function spaces. 
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Similar to the scaling function, the wavelet function can be expressed as a weighted sum of shifted, double-

resolution scaling functions. That is, 
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x h n x n                                   (31) 

where the hψ (n) are called the wavelet function coefficients. It can be shown that hψ (n) is related to hØ (n) by 

( ) ( 1) (1 )nh n h n    .                             (32) 

C. Discrete Wavelet Transform 
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We begin by defining the wavelet series expansion of function f (x) Є L
2
 (R) relative to wavelet ψ (x) 

and scaling function Ø (x). We can write  
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Where j0 is an arbitrary starting scale and the cjo (k) are normally called the approximation or scaling 

coefficients, the dj (k) are called the detail or wavelet coefficients. The expansion coefficients are calculated as  
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If the function is being expanded is a sequence of numbers, like samples of a continuous function f(x). 

The resulting coefficients are called the discrete wavelet transform (DWT) of f(x). Then the series expansion 

defined in Eqs. (34) and (35) becomes the DWT transform pair 
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where ( )f x , 
0 , ( )j k x , and 

, ( )j k x  are functions of discrete variable x = 0, 1, 2, ... , M  1. 

 
D. Wavelet Transforms in Two Dimensions 

 In two dimensions, a two-dimensional scaling function, Ø(x, y) and three two-dimensional wavelet 

ψ
H

(x, y)
, ψ

V

(x, y)
 and ψ

D

(x, y)
, are required. Each is the product of a one-dimensional scaling function  and 

corresponding wavelet   . 

( , ) ( ) ( )x y x y                              (39) 

( , ) ( ) ( )H x y x y                             (40) 

( , ) ( ) ( )V x y y x                                                      (41) 

( , ) ( ) ( )D x y x y                                                     (42) 

 

Where ψ
H
 measures variations along columns (like horizontal edges), ψ

V
 responds to variations along 

rows (like vertical edges), and ψ
D
 corresponds to variations along diagonals. 

Like the one-dimensional discrete wavelet transform, the two-dimensional DWT can be implemented 

using digital filters and down samplers. With separable two-dimensional scaling and wavelet functions, we 

simply take the one-dimensional FWT of the rows of f (x, y), followed by the one-dimensional FWT of the 

resulting columns.  

 

                       
Fig 5. The two-dimensional FWT – the analysis filter bank
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Fig 6. Two-Scale of Two –Dimensional Decomposition 

 

 
Fig 7. The two-dimensional DWT – The synthesis filter bank 

 

 The single-scale filter bank of Fig 6 can be “iterated” by tying the approximation output to the input of 

another filter bank to produce a arbitrary scale transform. As in the one-dimensional case, image f (x, y) is used 

as the first scale input, and output four quarter-size sub images  WØ Wψ
H
, Wψ

V,
 and Wψ

D
. These sub images 

are shown in the middle of Fig 6. Two iterations of the filtering process produce the two-scale decomposition at 

the right of Fig 6. The synthesis filter bank that reverses the process described above is shown in Fig 7. 

 

IV. Improved Set Portioning In Hierarchical Trees (ISPIHT) 
ISPIHT is the wavelet based image compression method which provides the highest image quality [8]. 

The improved SPIHT algorithm mainly makes the following changes. SPIHT codes four coefficients and then 

shifts to the next four ones and views the four coefficients as a block. The maximum of them regarded as the 

compared threshold will decrease number of comparison, which is related to the distribution of coefficient 

matrix. Even more, when the maximum in the block is smaller than the current threshold or equal to it, the block 

will be coded with only one bit instead of four zeros. Therefore, this proposed method can reduce redundancy to 

a certain extent. When computing the maximum threshold, the improved algorithm can initialize the maximum 

of every block. So, it can obviously reduce number of comparisons while scanning and coding zero trees. The 

coefficients in non important block will be coded in next scanning process or later, rather than be coded in the 

present scanning process. This method can implement the coefficients coded earlier to the non-important ones 

more adequately. Generally, wavelet transform coding for still image using SPIHT [12] algorithm can be 

modelled as Fig 7.  Firstly, original image matrix goes through wavelet transform. The output wavelet 

coefficients are then quantized and encoded by SPIHT coder. After that, bit streams are obtained. Wavelet 

transform image coding using traditional SPIHT has the advantages of embedded code stream structure, high 

compression rate, low complexity and easy to implement [13]. However, for it, there still exist several defects. 

1) When scanning the list of insignificant pixels (LIP), list of insignificant sets (LIS), or list of significant pixels 

(LSP), the repeated coefficient comparison can increase complexity of the  algorithm. 

2)The coefficients put into LIP at last scanning procedure which are smaller than the current threshold will 

result in redundancy. 

3)Early coding for non-important coefficients in SPIHT will affect the performance of  channel coding, 

especially unequal error protection (UEP). 

 

Therefore, the improved SPIHT algorithm mainly makes the following changes. 

*SPIHT codes four coefficients and then shifts to the next four ones. Therefore, views the four 

coefficients as a block [8][11]. The maximum of them regarded as the compared threshold will decrease number 

of comparison, which is relate with the distribution of coefficient matrix. Even more, when the maximum in the 

block is smaller than the current threshold or equal to it, the block will be coded with only one bit instead of four 

zeros. Therefore, this proposed method can reduce redundancy to a certain extent. 

*When computing the maximum threshold, the improved algorithm can initialize the maximum of every block. 

So, it can obviously reduce number of comparison when scanning and coding zero trees. 
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*The coefficients in non-important block will be coded in next scanning process or later, rather than be coded in 

the present scanning process [11]. This method can implement the coefficients coded earlier to the non-

important ones more adequately. 

On the basis of above-mentioned ideas for algorithm improvement, an improved algorithm is proposed 

and briefly describes it in the following paragraphs. In order to comprehend conveniently, symbols are given 

firstly. B(i,j) which represents a wavelet coefficient block with coordinate (i, j) includes four coefficients (i, j), 

(i+ 1, j), (i, j+l) and (i+l, j+l), like SPIHT described in detail in and will be divided into its four off springs with 

coordinates (2i, 2j), (2i+2,2 j), (2i, 2j+2) and (2i+2, 2j+2) . O(i, j): set of coordinates of all off springs of B(i,j). 

D(i, j): set of coordinates of all descendants of B(i,j) . L(i, j)=D(i, j)-O(i, j). LSP={P(i, j)IP(i, j) E H} and LIS 

have the same definitions as in. But the set in LIS represents either D(i, j) or L(i, j). To distinguish them, the 

type D represents D(i, j) and type L for L(i, j). Define list of insignificant block as LIB= {B(i, j)1(i, j) E H} 

instead of LIP. It stores the first coordinate of a group of 2X2 adjacent pixels which are regarded as a block. H 

stands for the wavelet coefficient matrix. Our algorithm encodes the sub band pixels by performing initialization 

and a sequence of sorting pass, refinement pass and quantization-step updating. However, differences of 

initialization and sorting pass still exist between the improved SPIHT [3] and traditional SPIHT. 

4)Initialization: LIB={B(O,O), B(0,2), B(2,0), B(2,2)}, LlS={D(0,2), D(2,0), D(2,2)}, 

T=2n, Cij is wavelet matrix coefficient and LSP is empty. n is expressed in (1). 

n = |log 2(max(i,j) |Ci,j|)|                              (43) 

Ci,j  is the matrix coefficient after DWT and (i, j) is the coordinate of Ci,j . 

5) Sorting pass: The sorting pass consists of two tests: the LIB test (LIBT) and LIS test (LIST). The LIBT will 

code the block or coefficients in blocks, while the LIST mainly disposes the sets in LIS. In each LlBT, if the 

maximum value of the coefficient block is smaller than the current threshold, the block is insignificant and '0'  is 

the coded bit. Otherwise, 1 will be output and represent the significance of the block. Then, the four coefficients 

will be respectively compared to the current threshold. When the coefficient has not been put into LSP, if it is 

insignificant. Otherwise, 10 or 11 represent significant negative sign or significant positive sign, respectively. 

After that, it will be removed from the block and added to the tail of LSP. While the test is finished, the block 

will be removed from LIB if all the four coefficients have been put into LSP. Otherwise, the block will be tested 

again in next LIBT. While in LIST, the set in LIS will be tested and coded according to its type. For type D, if 

the maximum coefficient in D(i,j) is smaller than the current threshold, the set is insignificant. Otherwise, the 

significant bit I will be coded and D(i, j) will be divided into its children tree and four blocks with coordinate 

(m, n) E Q(i, j) rather than four adjacent coefficients. The four blocks will be coded with the style as in LIBT, 

but the tail of LIB corresponding to their significances. After coding the four blocks, our algorithm will alter 

D(i,j) to L(i,j) and add L(i,j) to the tail of LIS if D(i,j) has grandson coefficients. Then, set D(i,j) will be 

removed from LIS. For type L, if  the maximum coefficient in L(i, j) is smaller than the current threshold, 0 will 

be output and represented the insignificance of the set . Otherwise, the significant bit 1 will be coded and L(i,j) 

will be divided into four sets D(m,n), (m, n) E Q(i,) which will be added to the tail of LIS. Then, set L(i,j) will 

be removed from LIS. After completing LIPT and LIBT tests, the same refinement pass is performed and as in 

traditional SPIHT the threshold is updated. For the improved SPIHT, when the maximum value of a coefficient 

block put into LIB is small enough, only one bit will used to represent it and the four coefficients of it will not 

be coded until the current threshold is smaller than the maximum value. Therefore, this algorithm can better 

avoid repeat coding and early coding for non-important coefficients better. Moreover, this algorithm has the 

same scanning order and method to determine importance of wavelet coefficients as SPIHT [2][3]. 

Consequently, it will inherit many advantages of SPIHT. 

Algorithm: ISPIHT Coding 

Output: Bit stream 

Input: Wavelet co-efficient or data matrix to be coded, A, the number of threshold levels, N. 

Assign LIP={ A(1,1), A(1,2), A(2,1), A(2,2)} 

Assign LIS with VTs for coordinates (1,3), (3,1) and (3,3) as type-0 descendent trees. 

Compute Vm, M, VT(Vector Tree), Threshold (as described in the Initialization). 

Assign Lp1=0; 

Comment: Sorting Pass 

For I=1 to N 

Comment: LIP Testing 

For each pixel in the LIP 

If a pixel is significant 

Send a 1, followed by sign bit. 

Delete the pixel form LIP and append its absolute value to LSP. 

Else 

Send a 0 
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End if 

End For each 

Comment: LIS Testing 

For each VT in LIS 

If the type of VT is 0 

If VT is significant 

Send a 1 

For each of the four pixels associated with the node of the VT. 

If a pixel is significant, 

Send a 1 followed by sign bit. 

Append the absolute value of the pixel to LSP. 

Else 

Send a 0 

Append the pixel to LIP 

End If 

End For each 

If VT has more than 1 element 

Neglect the first element, change its stype to 1 and append to LIS. 

End If 

Else 

Send a 0 

End If 

Else 

If VT (of type-1) is significant 

Send a 1 

Generate VT corresponding to the four top leftmost pixel co-ordinates of the 

four 2x2 sub-matrices associated with current node. 

Delete the VT from the LIS. 

Else 

Send a 0 

End If 

End If 

End For each 

Comment: Refinement Pass 

For r=1 to Lp1 

If (LSP(r) –Threshold)>=Threshold/2 

Send a 1 

Else 

Send a 0 

End if 

End For 

Lp1=No. of pixels in the LSP 

Threshold=Threshold/2; 

End For 

The decoding algorithm is just the reverse of the coding algorithm. But a difference with coding 

algorithm is that the LIP and LSP are stored as co-ordinates [1] and the LIS stores only the pixel co-ordinates of 

the topmost modes of the descendent trees and does not store VTs. Because during the decoding, testing whether 

a descendent tree is significant or not requires only whether the corresponding bit is 1 or zero, it does not require 

exhaustive searching as in the case of coding. In other words decoding remains the same as in SPIHT except the 

way of representation of the tree structure. 

 

V. Performance Evaluation 
The Proposed algorithm was performed using MATLAB 2009a on an INTEL Pentium Core 2 duo (1.8 

GHz, 2G RAM). We tested our algorithm on two different still images (paris city 256 x256 bbp and little river 

256 x256 bbp), according to a two-level wavelet decomposition using biorthogonal filters 9/7 [2, 9]. Most of the 

researchers have reported the performance of multispectral data in terms of bit-rate versus SNR/PSNR. Few 

approximated the algorithmic complexity in terms of the number of operations. Some presented a few of the 

original and decompressed images for visual comparison. Main purpose of all these results is to evaluate the 

quality of the decompressed data subjectively and objectively. However, the quantitative SNR/PSNR metrics are 
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too generic because they are averaged over all the pixels. Compression efficiency is measured by the 

compression ratio and is estimated by the ratio of the original image size over the compressed data size. The 

complexity of an image compression algorithm is calculated by the number of data operations required to 

perform both encoding and decoding processes. Practically, it is sometimes expressed by the number of 

operations. For a lossy compression scheme, a distortion measurement is a criterion for determining how much 

information has been lost when the reconstructed image is produced from the compressed data. The most often 

used measurement is the mean square error (MSE). In the MSE measurement the total squared difference 

between the original signal and the reconstructed one is averaged over the entire signal. Mathematically, 
21N

0t

ii XX
N

1
MSE 















                                     (44) 

Where  ix̂  is the reconstructed value of ix
 
, N is the number of pixels. The mean square error is 

commonly used because of its convenience. A measurement of MSE in decibels on a logarithmic scale is the 

Peak Signal-to-Noise Ratio (PSNR),  which is a popular standard objective measure of the lossy codec. We use 

the PSNR as the objective measurement for compression algorithms throughout this paper. It is defined as 

follows. 

PSNR = 10 log10   [255
2
 / MSE]                     (45) 

 

VI. Results & Discussions 
In this paper the compression results of multispectral images with various existing techniques like DCT 

KLT, DWT SPIHT and proposed novel method of DWT ISPIHT are compared. Firstly the original image 

matrix goes through wavelet transform and the output wavelet coefficients are then quantized and encoded by 

ISPIHT coder. The highly scalable improved SPIHT has lot of improvements when compared to the traditional 

SPIHT  in terms of PSNR, MSE, BER, SSIM and CR which are shown in the figures  Fig 8, Fig 9, Fig 10, Fig 

11 and Fig 12 respectively. The comparative results are shown in Table 1, Table 2, Table3, Table 4 and Table 5 

respectively. Analysis pertaining to the proposed method  is shown in Table 6 and the overall comparative 

results are shown in Table 7.Thus the improved SPIHT can be implemented to multispectral images for higher 

image quality i.e. high PSNR without much decrease in compression ratio. 

 

 
Fig 8. Graph between BPP and PSNR for various compression techniques  

 

Table 1. PSNR values for various compression techniques 
 

 

 

 

 

 

 

 

BPP DCT KLT DWT SPHIT PROPOSED 

0.2 36.0529 28.8618 31.9182 

0.4 35.6139 32.4597 43.5163 

0.6 35.6207 34.7859 44.0182 

0.8 37.1141 36.5259 48.1372 

1 36.6576 38.2797 45.0244 
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Fig 9. Graph between BPP and MSE for various compression techniques  

 

Table 2. MSE values for various compression techniques 

 

 

 

 

 

 

 

 

 
Fig 10. Graph between BPP and BER for various compression techniques  

              

 Table 3. BER values for various compression techniques 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11. Graph between BPP and SSIM for various compression techniques  

BPP DCT KLT DWT SPHIT PROPOSED 

0.2 16.1358 84.5093 41.8082 

0.4 17.8521 36.9074 2.89368 

0.6 17.8241 21.6017 2.57788 

0.8 12.6379 14.4707 0.99854 

1 14.0384 9.66304 2.04475 

BPP DCT KLT DWT SPHIT PROPOSED 

0.2 1 0.94 0.903152 

0.4 1 0.923218 0.766357 

0.6 1 0.905334 0.895754 

0.8 1 0.890442 0.998535 

1 1 0.868118 0.868118 
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Table 4. SSIM values for various compression techniques 

 

 

 

 

 

 

 

 

 

 
Fig 12. Graph between BPP and CR for various compression techniques  

 

Table 5. CR values for various compression techniques 

 

 

 

 

 

 

 

 

Table 6. Proposed Method Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BPP DCT KLT 
DWT 

SPHIT 
PROPOSED 

0.2 -0.00367 0.9879 0.73111 

0.4 -0.0133 0.994338 0.91184 

0.6 -0.02225 0.996568 0.95105 

0.8 -0.02915 0.997552 0.96852 

1 -0.04644 0.998387 0.96987 

BPP DCT KLT DWT SPHIT 
PROPOSE

D 

0.2 1 2 2 

0.4 1 2 4 

0.6 1 2 5.88506 

0.8 1 2 8 

1 1 2 9.66038 

BP

P 
PSNR MSE CR BER SSIM 

0.2 
31.918

2 
41.8082 2 

0.90315
2 

0.731107 

0.4 
43.516

3 
2.89368 4 

0.76635

7 
0.911836 

0.6 
44.018

2 
2.57788 

5.88
5 

0.89575
4 

0.951049 

0.8 
48.137

2 

0.99853

5 
8 

0.99853

5 
0.968517 

1 
45.024

4 
2.04475 

9.66
0 

0.84245
6 

0.969867 
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Table 7. Comparative Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII. Conclusions 
In this paper, we developed a compression technique for multispectral data using wavelet transform. 

The wavelet coefficients are using ISPIHT algorithm for optimal bit-allocation. We made an assumption that 

spectral correlation exists in the biorthogonal subclasses. Bands of multispectral data respond differently to 

DWT. The bands which are similar in Wavelet domain are encoded extremely well, this is confirmed by the 

results obtained using this technique. This technique is shown to work across both multispectral and hyper 

spectral images. We compared the numerical results obtained with our technique with some of the recently 

proposed techniques and got superior results. This work has shown that the compression of image can be 

improved by considering spectral and temporal correlations as well as spatial redundancy. The efficiency of 

temporal prediction was found to be highly dependent on individual image sequences. Given the results from 

earlier work that found temporal prediction to be more useful for image, we can conclude that the relatively poor 

performance of temporal prediction, for some sequences, is due to spectral prediction being more efficient than 

temporal. Another conclusion and future work finding from this work is that the extra compression available 

from image can be achieved without necessitating a large increase in decoder complexity. Indeed the presented 

scheme has a decoder that is less complex than many lossless image compression decoders, mainly due to the 

use of forward rather than backward adaptation. The results of adaptive and Non-adaptive based image 

compression are compared. From the results the adaptive wavelet decomposition works better than non-adaptive 

(Haar) wavelet decomposition. Future work aims at extending this frame work for colour images, video 

compressions, and de-noising applications. 
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