
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 4, Issue 3, Ver. III (May-Jun. 2014), PP 45-51

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

www.iosrjournals.org 45 | Page

Design of Parallel Prefix Adders using FPGAs

Ch.Cury, M.Nisanth

Abstract: parallal prefix adders are one of the fastest types of adder that had been created and developed.

this paper investigates three types of carry-tree adders (the Kogge-Stone, sparse Kogge-Stone, and spanning

tree adder) and compares them to the simple ripple carry adder and carry skip adder.these designs of varied bit

widths were Implemented on a xilinx spartan 3E FPGA and delay measurements were made with a high

performance logic analyzer .Due to the presence of a fast carry-chain,the RCA design exhibit better delay

performance up to 128 bits.the carry tree adders are expected to have a speed advantage over the the RCA as

bit widths approach 256.

Keywords: parallel prefix adder,Brent Kung adder, Kogge Stone adder, computational delay comparison, area

comparison

I. Introduction
The binary adder is the critical element in most digital circuit designs including digital signal

processors (DSP) and microprocessor data path units. As such, extensive research continues to be focused on

improving the power delay performance of the adder. In VLSI implementations, parallel-prefix adders are

known to have the best performance. Reconfigurable logic such as Field Programmable Gate Arrays (FPGAs)

has been gaining in popularity in recent years because it offers improved performance in terms of speed and

power over DSP-based and microprocessor-based solutions for many practical designs involving mobile DSP

and telecommunications applications and a significant reduction in development time and cost over

Application Specific Integrated Circuit (ASIC) designs. The power advantage is especially important with the

growing popularity of mobile and portable electronics, which make extensive use of DSP functions. However,

because of the structure of the configurable logic and routing resources in FPGAs, parallel-prefix adders will

have a different performance than VLSI implementations. In particular, most modern FPGAs employ a fast-

carry chain which optimizes the carry path for the simple Ripple Carry Adder (RCA).

In this paper, the practical issues involved in designing and implementing tree-based adders on FPGAs

are described. An efficient testing strategy for evaluating the performance of these adders is discussed. Several

tree-based adder structures are implemented and characterized on a FPGA and compared with the Ripple Carry

Adder (RCA) and the Carry Skip Adder (CSA). Finally, some conclusions and suggestions for improving FPGA

designs to enable better tree-based adder performance are given.

II. Carry-Tree Adder Designs
Parallel-prefix adders, also known as carry-tree adders, pre-compute the propagate and generate signals

[1]. These signals are variously combined using the fundamental carry operator(fco) [2].

(gL, pL) ο(gR, pR) = (gL+ pL•gR, pL• pR) (1)

Due to associative property of the fco, these operators can be combined in different ways to form various adder

structures. For, example the four-bit carry-lookahead generator is given by:

c4=(g4, p4)ο[(g3, p3) ο [(g2, p2) ο (g1, p1)]] (2)

A simple rearrangement of the order of operations allows parallel operation, resulting in a more

efficient tree structure for this four bit example:

c4 =[(g4, p4) ο (g3, p3)]ο[(g2, p2) ο (g1, p1)] (3)

It is readily apparent that a key advantage of the treestructured adder is that the critical path due to the

carry delay is on the order of log2Nfor an N-bit wide adder. The arrangement of the prefix network gives rise to

various families of adders. For a discussion of the various carry-tree structures, see [1, 3]. For this study, the

focus is on the Kogge-Stone adder [4], known for having minimal logic depth and fanout (see Fig 1(a)). Here we

designate BC as the black cell which generates the ordered pair in equation (1);the gray cell (GC) generates the

left signal only, following [1]. The interconnect area is known to be high, but for an FPGA with large routing

overhead to begin with, this is not as important as in a VLSI implementation. The regularity of the Kogge-Stone

prefix network has built in redundancy which has implications for fault-tolerant designs [5]. The sparse Kogge-

Stone adder, shown in Fig 1(b), is also studied. This hybrid design completes the summation process with a 4 bit

RCA allowing the carry prefix network to be simplified.

Design of Parallel Prefix Adders using FPGAs

www.iosrjournals.org 46 | Page

(a)

(b)

Fig. 1. (a) 16 bit Kogge-Stone adder and (b) sparse 16-bit Kogge-Stone adder

Another carry-tree adder known as the spanning treecarry-lookahead (CLA) adder is also examined

[6].Like the sparse Kogge-Stone adder, this design terminates with a 4-bit RCA. As the FPGA uses a fast carry-

chain for the RCA, it is interesting to compare the performance of this adder with the sparse Kogge-Stone and

regular Kogge-Stone adders. Also of interest for the spanning-tree CLA is its testability features [7].

Fig. 2.Spanning Tree Carry Lookahead Adder (16 bit)

Design of Parallel Prefix Adders using FPGAs

www.iosrjournals.org 47 | Page

III. Related Work

Xing and Yu noted that delay models and cost analysis for adder designs developed for VLSI

technology do not map directly to FPGA designs [8]. They compared the design of the ripple carry adder with

the carry-lookahead, carry-skip, and carry-select adders on the Xilinx 4000 series FPGAs.

Only an optimized form of the carry-skip adder performed better than the ripple carry adder when the

adder operands were above 56 bits. A study of adders implemented on the Xilinx Virtex II yielded similar

results [9]. In [10], the authors considered several parallel prefix adders implemented on a Xilinx Virtex 5

FPGA. It is found that the simple RCA adder is superior to the parallel prefix designs because the RCA can take

advantage of the fast carry chain on the FPGA.

This study focuses on carry-tree adders implemented on a Xilinx Spartan 3E FPGA. The distinctive

contributions of this paper are two-fold. First, we consider tree-based adders and a hybrid form which combines

a tree structure with a ripple-carry design. The Kogge-Stone adder is chosen as a representative of the former

type and the sparse KoggeStone and spanning tree adder are representative of the latter category. Second, this

paper considers the practical issues involved in testing the adders and provides actual measurement data to

compare with simulation results. The previous works cited above all rely upon the synthesis reports from the

FPGA place and route software for their results. In addition to being able to compare the simulation data with

measured data using a high-speed logic analyzer, our results present a different perspective in terms of both

results and types of adders as those presented in [8-10].

IV. Method Of Study

The adders to be studied were designed with varied bit widths up to 128 bits and coded in VHDL. The

functionality of the designs were verified via simulation with ModelSim.The Xilinx ISE 12.2 software was used

to synthesize the designs onto the Spartan 3E FPGA. In order to effectively test for the critical delay, two steps

were taken. First, a memory block (labeled as ROM in the figure below) was instantiated on the FPGA using the

CoreGenerator to allow arbitrary patterns of inputs to be applied to the adder design. A multiplexer at each

adder outputselects whether or not to include the adder in the measured results, as shown in Fig. 3. A switch on

the FPGA board was wired to the select pin of the multiplexers. This allows measurements to be made to

subtract out the delay due to the memory, the multiplexers, and interconnect (both external cabling and internal

routing).

Fig. 3. Circuit used to test the adders

Second, the parallel prefix network was analyzed to determine if a specific pattern could be used to

extract the worst case delay. Considering the structure of the GeneratePropagate (GP) blocks (i.e., the BC and

GC cells), we were able to develop the following scheme, by considering the following subset of input values to

the GP blocks.

Table I: Subset of (g, p) Relations Used for Testing

Design of Parallel Prefix Adders using FPGAs

www.iosrjournals.org 48 | Page

If we arbitrarily assign the (g, p) ordered pairs the values (1, 0) = True and (0, 1) = False, then the table

is self-contained and forms an OR truth table. Furthermore, if both inputs to the GP block are False, then the

output is False; conversely,

if both inputs are True, then the output is True. Hence, an input pattern that alternates between

generating the (g, p) pairs of (1, 0) and (0, 1) will force its GP pair block to alternate states. Likewise, it is easily

seen that the GP blocks being fed by its predecessors will also alternate states.

Therefore, this scheme will ensure that a worse case delay will be generated in the parallel prefix

network since every block will be active. In order to ensure this scheme works, the parallel prefix adders were

synthesized with the “Keep Hierarchy” design setting turned on (otherwise, the FPGA compiler attempts to

reorganize the logic assigned to each LUT). With this option turnedon, it ensures that each GP block is mapped

to one LUT, preserving the basic parallel prefix structure, and ensuring that this test strategy is effective for

determining the critical delay. The designs were also synthesized for speed rather than area optimization.

The adders were tested with a Tektronix TLA7012 Logic Analyzer. The logic analyzer is equipped

with the 7BB4 module that provides a timing resolution of 20 ps under the MagniVu setting. This allows direct

measurement of the adder delays. The Spartan 3E development board is equipped with a soft touch-landing pad

which allows low capacitance connection directly to the logic analyzer. The test setup is depicted in the figure

below.

Fig 4.RTL Schematic

Fig 5.Output waveforms

V. Discussion Of Results

The simulated adder delays obtained from the Xilinx ISE synthesis reports are shown in Fig. 6. The

simulation results for the carry skip adders are not included because the ISE software is not able to correctly

identify the critical path through the adder and hence does not report accurate estimates of the adder delay.

Observe that a semi-log plot is employed, so as expected the tree-adder delay plots as a straight line on this

graph. Somewhat surprising is the fact that the sparse Kogge-Stone adder has about the same delay as the

regular Kogge-Stone adder. Because the sparse Kogge Stone completes the summation process with a 4 bit

RCA, which are optimized via the fastcarry chain, its performance is expected to be intermediate between the

regular KoggeStone adder and the RCA. The impact of the routing overhead would seem to be a likely cause.

However, according to the synthesis reports, the delay with the logic only makes the regular Kogge-Stone

slightly faster. This will need to be a topic of further investigation.

Design of Parallel Prefix Adders using FPGAs

www.iosrjournals.org 49 | Page

Fig. 6. Simulation results for the adder designs

Overall, when the delay due to routing overhead is removed, the tree adders are now closer to the

simple RCA design. The RCA adder exhibits the best delay with widths up to 64 bits when the routing delay is

excluded and out to 128 bits with the routing delay included. Figures 7 and 8 depict the measured results using

the TLA. A comparison between the tree adders and the RCA is given in Figure 7. The basic trends are the

same: the tree adders exhibit logarithmic delay dependence on bit widths and the RCA has linear performance.

An RCA as large as 160 bits wide was synthesizable on the FPGA, while a Kogge-Stone adder up to 128 bits

wide was implemented. The carry-skip adders are compared with the Kogge-Stone adders and the RCA in

Figure 8. Carry skip adders with a skip of four and eight were implemented. The poor performance of the carry

skip adders is attributable to the significant routing overhead incurred by this structure.

Fig. 7. Measured results for the parallel-prefix adder designs compared with the RCA.

Design of Parallel Prefix Adders using FPGAs

www.iosrjournals.org 50 | Page

Fig. 8. Measured results for the carry-skip adders compared to the RCA and Kogge-Stone adders.

The actual measured data appears to be a bit smaller than what is predicted by the Xilinx ISE synthesis

reports. An analysis of these reports, which give a breakdown of delay due to logic and routing, would seem to

indicate that at adder widths approaching 256 bits and beyond, the KoggeStone adder will have superior

performance compared to the RCA. Based on the synthesis reports, the delay of the Kogge-Stone adder can be

predicted by the following equation:

tKS= (n+2).ΔLUT+ ρKS(n) (4)

where N= 2
n
, the adder bit width, ΔLUTis the delay through a lookup table (LUT), and ρKS(n) is the routing

delay of the Kogge-Stone adder as a function of n. The delay of the RCA can be predicted as:

tRCA= (N – 2).ΔMUX+ τRCA (5)

where ΔMUXis the mux delay associated with the fast-carry chain and τRCAis a fixed logic delay.

There is no routing delay assumed for the RCA due to the use of the fast-carry chain. For the Spartan 3E FPGA,

the synthesis reports give the following values: ΔLUT= 0.612 ns, ΔMUX= 0.051 ns, and τRCA= 1.715 ns. Even

though ΔMUX<< ΔLUT, it is expected that the Kogge-Stone adder will eventually be faster than the RCA

because N= 2n, provided that ρKS(n) grows relatively slower than (N –

that the Kogge-Stone adder will havesuperior performance at N = 256.

Table II: Delay Results for the Kogge-Stone Adders:

The second and third columns represent the total predicted delay and the delay due to routing only for

the Kogge-Stone adder from the synthesis reports of the Xilinx ISE software. The fitted routing delay in column

four represents the predicted routing delay using a quadratic polynomial in n based on the N= 4 to 128 data. This

allows the N= 256 routing delay to be predicted with some degree of confidence as an actual Kogge-Stone adder

at this bit width was not synthesized. The final two columns give the predicted adder delays for the Kogge-Stone

and RCA using equations (4) and (5), respectively. The good match between the measured and simulated data

Design of Parallel Prefix Adders using FPGAs

www.iosrjournals.org 51 | Page

for the implemented Kogge-Stone adders and RCAs gives confidence that the predicted superiority of the

Kogge-Stone adder at the 256 bitwidth is accurate.

This differs from the results in [10], where the parallelprefix adders, including the Kogge-Stone adder,

always exhibited inferior performance compared with the RCA (simulation results out to 256 bits were

reported). The work in [10] did use a different FPGA (Xilinx Virtex 5), which may account for some of the

differences. The poor performance of some of the other implemented adders also deserves some comment. The

spanning tree adder is comparable in performance to the Kogge-Stone adder at 16 bits. However, the spanning

tree adder is significantly slower at higher bit widths, according to the simulation results, and slightly slower,

according to the measured data. The structure of the spanning tree adder results in an extra stage of logic for

some adder outputs compared to the Kogge-Stone. This fact coupled with the way the FPGA place and route

software arranges the adder is likely the reason for this significant increase in delay for higher order bit widths.

Similarly, the inferior performance of the carry-skip adders is due to the LUT delay and routing overhead

associated with each carry-skip logic structure.

Even if the carry-skip logic could be implemented with the fast-carry chain, this would just make it

equivalent in speed to the RCA. Hence, the RCA delay represents the theoretical lower limit for a carry-skip

architecture on an FPGA.

VI. Conclusion And Future Work

Both measured and simulation results from this study have shown that parallel-prefix adders are not as

effective as the simple ripple-carry adder at low to moderate bit widths. This is not unexpected as the Xilinx

FPGA has a fast carry chain which optimizes the performance of the ripple carry adder. However, contrary to

other studies, we have indications that the carry-tree adders eventually surpass the performance of the linear

adder designs at high bit-widths, expected to be in the 128 to 256 bit range. This is important for large adders

used in precision arithmetic and cryptographic applications where the addition of numbers on the order of a

thousand bits is not uncommon. Because the adder is often the critical element which determines to a large part

the cycle time and power dissipation for many digital signal processing and cryptographical implementations, it

would be worthwhile for future FPGA designs to include an optimized carry path to enable treebased adder

designs to be optimized for place and routing.This would improve their performance similar to what is found for

the RCA. We plan to explore possible FPGA architectures that could implement a “fast-tree chain” and

investigate the possible trade-offs involved. The built-in redundancy of the Kogge-Stone carry-tree structure and

its implications for fault tolerance in FPGA designs is being studied. The testability and possible fault tolerant

features of the spanning tree adder are also topics for future research.

References
[1]. N. H. E. Weste and D. Harris, CMOS VLSI Design, 4th edition, Pearson–Addison-Wesley, 2011.
[2]. D. Harris, “A Taxonomy of Parallel Prefix Networks,” in Proc. 37th Asilomar Conf. Signals Systems and Computers, pp. 2213–7,

2003.

[3]. P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations,” IEEE
Trans. on Computers, Vol. C-22, No 8, August 1973.

[4]. P. Ndai, S. Lu, D. Somesekhar, and K. Roy, “FineGrained Redundancy in Adders,” Int. Symp. on Quality Electronic Design, pp.

317-321, March 2007.
[5]. T. Lynch and E. E. Swartzlander, “A Spanning Tree Carry Lookahead Adder,” IEEE Trans. on Computers, vol. 41, no. 8, pp. 931-

939, Aug. 1992.

[6]. D. Gizopoulos, M. Psarakis, A. Paschalis, and Y. Zorian, “Easily Testable Cellular Carry Lookahead Adders,” Journal of Electronic

Testing: Theory and Applications 19, 285-298, 2003.

[7]. S. Xing and W. W. H. Yu, “FPGA Adders: Performance Evaluation and Optimal Design,” IEEE Design & Test of Computers, vol.

15, no. 1, pp. 24-29, Jan. 1998.
[8]. M. Bečvářand P. Štukjunger, “Fixed-Point Arithmetic in FPGA,” Acta Polytechnica, vol. 45, no. 2, pp. 67-72, 2005.

