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Abstract: This paper proposes a design to interface ADCs and DACs of different data width to a processor on 

an FPGA using VHDL. The ADCs and DACs are connected to a processor and the characteristics of the 

interface can be changed by programming the processor. Any generic device can be connected using the same 

interface. Verification is done by Open verification methodology using System Verilog. 
Index Terms: ADC, DAC, IP core, FPGA, OVM testbench. 
 

I. Introduction 

Today the world is moving towards a digital platform. At the same time, it is seen that all physical 

world signals available to us are still very much analog in nature, but their processing obviously happens in the 

digital domain. So for such a wide a variety of applications, it is of utmost importance that we have properly 
designed Analog-To-Digital Convertors (ADCs) and Digital-to-Analog Converters (DACs). 

A FPGA (Field Programmable Gate Array) board can be used to perform a lot of operations on the real 

world signals, be it simple arithmetic operations or complex transforms. The primary motivation behind taking 

up this project is the large utility of the digital signals on which a lot of operations and transforms, viz Short 

time Fourier transform, Stockwell Transform, Wavelet transform etc. could be done, which are very tedious and 

time consuming processes if the signals are in the analog domain. Simultaneously we must also remember that 

all digital signals cannot be used directly, as all the real world signals are more or less analog in nature. Hence, 

it is of utmost importance that we are able to use the ADC and DAC effectively and frequently. 

Field Programmable Gate Array which provides flexibility in configuring the device according to the 

user requirement [1]. The major defining characteristic of the FPGA is that it can be programmed. Programming 

an FPGA is very different from a microprocessor or a DSP processor. A computer system contains both a CPU 
and a separate memory that stores the instruction and data. The FPGAs program is interwoven into the structure 

of FPGA. The programming directly implements the logic functions and interconnections. When an FPGA is 

used in final design, the jump from prototype to product is much smaller and easier. They are having a large 

number of input and output lines compared to microprocessors, micro-controllers and DSPs. FPGAs are having 

a higher process- 

 

 
Fig. 1.  Basic Block Diagram 

 

ing speed compared to microprocessors and microcontrollers which is a need in most of the control application. 

A system usually has an embedded user interface as a form of software and encompasses many components 

inside, not only the hard-ware but also the software that constitutes the system [2]. Such a complicated entity 

can be handled only with computer-aided design 

The existing systems are based on traditional processor based systems with multiple ICs for various 

functionalities. This introduces a larger space and power which leads to low reliability. In order to reduce the 
space and power, an FPGA based systems is proposed, where all the digital functionalities are implemented on 

an FPGA [3]. All the analog circuitry is kept external with proper interface to the processor within the FPGA 

[4]. The system will be realized using Xilinx Virtex 5-Fx series FPGA, where the PowerPC 440 processor core 

is established. The processor can be interface with all the peripheral through a high speed On-chip Peripheral 

Bus. 

Traditionally one interface can connect to only a single ADC or DAC for which it is designed [5]. This 
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is a disadvantage when the final system is uncertain or several peripherals with different characteristics need to 

be interfaced. All the ADCs or DACs can be connected via a multiplexer easily but the internal code also needs 

to be changed for each device. Since this is not a feasible solution, we need a generic design to which any 
arbitrary device can be connected. 

 

II. Design Procedure 

The basic block diagram as shown in Fig. 1 is shown. The PowerPC 440 hardcore processor can be 

used or the same 

 

 
Fig. 2.  RTL of ADC top module 

 

design can be used to interface to a softcore processor or external processor. The interface to each is designed 

separately and also an OPB interface is designed to connect to the processor. 

 

A. Implementation of ADC interface 

The state IDLE initializes the interface of ADC. START initiates the ADC conversion process. CONV 

state produces a RC signal low which tells the ADC to start conversion. In the READ state a READ FLAG is 

set. The data from ADC is then stored in a temporary register and a FINISH FLAG set after the data transfer is 

completed. The serial data is made parallel and output to the DATA IN OPB pin which is the input data pin to 
the OPB interface [6]. 

The on-chip peripheral bus (OPB) is designed for easy connection of on-chip peripheral devices [7]. It 

provides a common design point for various on-chip peripherals. The OPB is a fully synchronous bus which 

functions independently at a separate level of bus hierarchy. It is not intended to connect directly to the 

processor core. The processor core can access the slave peripherals on this bus through the PLB to OPB bridge 

unit which is a separate core. 

 

B. Implementation of DAC interface 

The  state  IDLE  initializes  the interface  of DAC. LOAD START  initiates  the  DAC

 conversion process by making the signal LOAD DATA to the DAC low. SCLK GEN OFF and 

SCLK GEN ON generate SCK high and low signals. 1 bit of data is output on the SDI pin for each pulse of 
SCLK. The number of bits is determined by the 
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Fig. 3.  RTL of DAC top module 

 

value stored in the DATA WIDTH register. The input data is received through the OPB interface. 

 

C. Software programmable registers 

A set of registers present in both ADC and DAC modules make this design entirely software 

programmable. These registers can be written by the processor to which the design is connected. 

In ADC, DATA WIDTH register stores the number of bits the ADC output, the ACQUISITION TIME 

register stores the number of clock cycles the ADC takes to acquire data after the RC (read/convert) signal is 

made low. The width of the RC pulse is stored in the RD TIME register. 

In DAC, DATA WIDTH register stores the number of bits the DAC input, the SCLK ON TIME and 

SCLK OFF TIME register stores the number of clock cycles of the SCLK on and off time. The width of the 

LOAD pulse needed is stored in the LOAD TIME register. 

Apart from this there is an OP DIRECTION register in both to change the polarity of the data if 

required. 
The registers can be written or read by asserting WRITE REG and READ REG signals. All the registers are 32 

bit registers and can be used to store the data related to any desired serial ADC and DAC even if this 

information is not previously known. It is highly beneficial in applications where the peripherals may be 

changed or is undecided. 

 

III. Verification Procedure 
A. Open Verification Methodology  

An OVM testbench is composed of reusable verification environments called OVM verification 

components (OVCs) [8]. An OVC is an encapsulated, ready-to-use, configurable verification environment (as in 
Fig. 4) for an interface protocol, 
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Fig. 4.  OVM Environment 

 

a design sub-module or a full system. Every OVC follows a consistent architecture and consists of a complete 

set of elements for stimulating, checking, and collecting coverage in-formation for a specific protocol or design. 

The OVC is applied to the device under test (DUT) to verify your implementation of the protocol or design 

architecture. OVCs expedite creation of efficient testbenches for your DUT and are structured to work with any 

hardware description language (HDL) and high-level verification language (HVL) including Verilog, VHDL, e, 

SystemVerilog, and SystemC. 

This method is to build a coverage-driven functional verification testbench, with constraint random 

stimulus and direct stimulus. The hierarchical testbench, which is developed based on Open Verification 
Methodology (OVM), is reusable and efficient. When compared to traditional verification methods, it has been 

proven that this new one has greatly saved verification time and manpower, enhanced verification unit reuse [9]. 

 

B. OVC Overview  

1) Data Item : Data items represent the input to the DUT. Examples include networking packets, bus 

transactions, and instructions. The fields and attributes of a data item are derived from the data items 

specification.  

2) Driver: A driver is an active entity that emulates logic that drives the DUT. A typical driver repeatedly 

receives a data item and drives it to the DUT by sampling and driving the DUT signals. For example, a driver 

controls the read/write signal, address bus, and data bus for a number of clocks cycles to perform a write 

transfer.  
3) Sequencer: A sequencer is an advanced stimulus generator that controls the items that are provided to 

the driver for execution. By default, a sequencer behaves similarly to a simple stimulus generator and returns a 

random data item upon request from the driver. This default behavior allows you to add constraints to the data 

item class in order to control the distribution of randomized values. Unlike generators that randomize arrays of 

transactions or one transaction at a time, a sequencer captures important randomization requirements out-of-the-

box. 

4) Monitor: A monitor is a passive entity that samples DUT signals but does not drive them. Monitors 

collect coverage information and perform checking. Even though reusable drivers and sequencers drive bus 

traffic, they are not used for coverage and checking.  

5) Agent: Sequencers, drivers, and monitors can be reused independently, but this requires the 

environment integrator to learn the names, roles, configuration, and hookup of each of these entities. To reduce 

the amount of work and knowledge required by the test writer, OVM recommends that environment developers 
create a more abstract container called an agent. Agents can emulate and verify DUT devices. They en-capsulate 

a driver, sequencer, and monitor. OVCs can contain more than one agent. Some agents (for example, master or 

transmit agents) initiate transactions to the DUT, while other agents (slave or receive agents) react to transaction 

requests. Agents should be configurable so that they can be either active or passive. Active agents emulate 

devices and drive transactions according to test directives. Passive agents only monitor DUT activity.  
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IV. Simulation Results 

The simulation software is Xilinx ISim. And the selected device is Virtex- 5 FXT FPGA. 

Verification is done using OVM. System verilog is the language used. Clock frequency of 50MHz is 

used. Arbitrary inputs are given and output observed. For ADC the input is externally given and the same is 

transmitted to the OPB connection regardless of the data width and other factors as in Fig. 5. Similarly the DAC 

input given is transmitted at any desired clock rate as in Fig. 6. The system is found to be stable for any clock 

and SCLK with varying duty cycles. Using the OVM monitor 100 % code coverage is ensured.i.e all 

combinations of input is tried out in both ADC and DAC to get this coverage for the finite state machine 

designed 

 

V. Results And Summary 

100% functional code coverage has been obtained using OVM. The ADC uses 349 that is 3% of the 

registers and 469 that is 9% of the LUTs 7 whereas the the DAC uses 512 that is 5% of the registers and 906 

that is 18% of the LUTs. Hence a total of 8% of registers and 27 % of registers have been utilised by this design. 

227 and 340 flip flops are used respectively. 

 

VI. Applications 

The standalone implementation of ADC could be integrated in different projects. A DAC could be 

achieved and used in conjunction with ADC for numerous applications like Fast 
 

 
Fig. 5.  ADC Verification result 

 

 
Fig. 6.  DAC Verification result 

 

Fourier Transforms, implementation of Fuzzy Logic control using FPGA etc. This IP core design can 

be easily integrated into any design for data acquisition. It is better than other IP cores due to its 

programmability. 

 
Fig. 7.  Utilization Summary for ADC 
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Fig. 8.  Timing Summary for ADC 

 

 
Fig. 9.  Utilization Summary for DAC 

 

 
Fig. 10.  Timing Summary for DAC 

 

VII. Conclusion 

This design uses VHDL as design language to achieve the interface to ADC and DAC. Using Xilinx 

ISE software and OVM testbench to complete simulation and test. The results are stable and reliable. The design 

has great flexibility and high integration. Especially in the field of electronic design, where SOC technology has 

recently become increasingly mature, this design has great significance. 
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