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Abstract : Automatic detection of neurological disordered subjects voice  mostly relies on parameters extracted 

from time-domain processing. The calculation of these parameters often requires prior pitch period estimation; 

which in turn depends heavily on the robustness of pitch detection algorithm. In the present work cepstral-

domain processing technique which does not require pitch estimation has been adopted to extract the features of 

voice  signal. The Mel frequency cepstral coefficients (MFCCs) are computed using two methods; the fast 

Fourier transform (FFT) and the linear predictive coding (LPC) method. The cepstral parameters estimated 

from these methods are used as features to classify normal subject voice from neurologically disordered 

subject’s voice using Gaussian mixture model (GMM). The results of the two methods are compared, and it is 
found that the accuracy of LPC-MFCC based GMM classifier is 89.55% compared to FFT-MFCC based GMM 

classifier which is giving an accuracy of classification of 88.5%.  

Keywords  - Fast Fourier Transform, Gaussian mixture model, Linear prediction coefficient, Mel frequency 

cepstral coefficient. 

 

I. Introduction 
The voice problems may be caused by abnormal control, coordination, or strength of voice box muscles 

due to an underlying neurological disease such as; stroke, Parkinson’s disease (PD), cerebral demyelination, 

amyotrophic lateral sclerosis. The change in voice is one of the symptoms for neurological disorder and 
dysphonia can be the first sign of a neurological disorder. The voices of these neurologic disorder tend towards 

either constancy or variability of phonation (dysphonia) depending upon whether or not the pathophysiology of 

the disease produces relatively steady or relatively fluctuating abnormal laryngeal or respiratory muscle 

movements. Neurological voice problems are primarily diagnosed via patient history and physical examination 

[1]. These physical examinations are invasive and cause significant discomfort to the patient. Hence numerous 

laboratories worldwide concentrate on diagnostic support methods based on acoustic voice analysis which, 

combined with classification methods provide the development of an expert aided system for the detection of 

speech system pathologies and also serves as a good automatic screening system [2], [3], [4], [6], [7], [8], [9], 

[10]. The traditional measurement methods to characterize the speech signal includes F0 (the fundamental 

frequency or pitch of vocal oscillation), absolute sound pressure level (indicating the relative loudness of 

speech), jitter(the extent of variation in speech F0 from one vocal cycle to other), shimmer (the extent of 

variation in speech amplitude from cycle to cycle), and noise-to-harmonics ratios (the amplitude of noise 
relative to tonal components in the speech). The earlier studies have shown variations in all these measurements 

for comparison of healthy controls to PD patients, indicating that these could be useful measures in assessing the 

extent of disorder in voice [1], [4], [9]-[23] . Studies have shown variations in all these measurements for 

comparison of healthy controls to PD patients, indicating that these could be useful measures in assessing the 

extent of dysphonia [2], [7], [8]-[10], [12], [14], [15], [23]. Also for these measurements long duration of signal 

is required, which is sometimes very difficult to collect them from voice affected patients. An alternate to this is 

the frequency domain analysis which requires less data and gives more information [24], [25]. In the earlier 

study [12], time domain features and the classification accuracy may be due to the fact that the measures 

considered are depending on the pitch measurements. Hence in the present work the well-known MFCCs; a 

cepstral domain measure is used as an alternative, as they do not show the same dependency on pitch of the 

signal. Here two methods has been used to extracts the MFCCs; the FFT based MFCC and LPC based MFCC 
and an attempt of evaluation of these two methods has been exercised on the voice samples [26].  

 

II. Materials And Methods 
2.1 Data Collection 

The database containing total 182 phonations of sustained vowel /ah/ was collected from both male 

(62.72 ± 8.0 yrs) and female (65.19 ± 8.8 yrs) subjects suffering from different neurological disorders which 

include PD, cerebellar demyelination, and stroke. The disordered patient data were collected from outpatient 
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wing of Neurology Department, J.S.S. Hospital, Mysore. The controlled group consist of 98 phonations of 

sustained vowel /ah/ from both male and female subjects who were not complaining any voice problems and 

their age matching with that of patient group. For this study, approval is obtained from the hospital ethical 
committee. 

Voice signals are recorded as per the standards through a microphone at a sampling frequency of 

44,100 Hz using a 16-bit sound card in a laptop computer with a Pentium processor [27], [28]. The microphone 

to mouth distance was at 5 cm and the subjects were asked to phonate the vowels /ah/ for at least 3 sec at a 

comfortable level. Further, a steady portion of the signal of 1.5 sec duration was selected for the acoustic 

analysis. All the recordings were done in mono-channel mode and saved in WAVE format on the hard disk and 

acoustic analysis were done on these recordings. 

 

2.2 Feature Extraction 

 
Fig.1 Framing of the voice signal. 

 

The foremost step involved in feature extraction is to extract vectors of features which are uniformly 

spaced in the time domain based voice sample waveform. For this the framing [29] of the waveform is done as 

shown in fig. 1. 

 

2.2.1 Pre- emphasis  

The speech production system of human has the tendency of attenuating the high frequencies, hence to 

emphasise on the higher frequencies a 1st order high pass filter with filter function given by eq. (1) is used. 

    y t = x t − 0.97x(t − 1)     (1) 

Where x(t) is the input voice and y(t) is the output. 
 

2.2.2 Framing 

 The time-domain waveform is divided into overlapping fixed duration segments called frames. Here 

frames of 20 ms with 10 ms overlap is considered as shown in fig.1. [26], [30]. 

 

2.2.3 Windowing 

The framing operation has a rectangular window effect which will generate undesirable spectral artefacts. 

Thereby each frame is multiplied by a window function to smooth the effect by tapering each frame at the 

beginning and end edges (Hamming window). This tapered window function creates a smoother and less 

distorted spectrum. 
 

2.2.4 MFCC Features 

 The acoustic measurement of voice can be carried out in two dominant methods. First, the parametric 

modelling approach which is used to develop a model which matches closely the resonant structure of the 

human vocal tract that produces the corresponding voice/speech sound. This is derived from LPC analysis. The 

second is the nonparametric modelling method; the basis for this method is the human auditory perception 

system. The FFT based MFCCs are used to have knowledge on the human auditory perception system [30]. The 

term mel refers to a kind of measurement related to perceived frequency scale. The mapping between the real 

frequency scale (Hz) and the perceived frequency scales (mels) is approximately linear below 1 kHz and 

logarithmic at higher frequencies. The bandwidth of the critical band varies according to the perceived 

frequency.  
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Fig.2: Extraction of MFCC features using FFT and LPC method 

 

The MFCC parameters were calculated for both normal and neurological subjects for a dimension of 13. 

Figure 2 shows the extraction of MFCC parameters. The left hand flowchart in the figure shows the calculation 

of the conventional FFT based MFCCs. The right hand flowchart shows the LPC based MFCCs method. In our 
earlier work [31], we have discussed in detail the methodology of conventional FFT-MFCCs parameters 

calculation. In this, work the LPC-MFCCs were computed using the method as shown in fig.2. Here the LPC 

spectral estimate is of the spectral envelope of an AR filter resulting from a 10th order LPC analysis. In order to 

provide a representation of the speech signal, which is, as similar as possible for the conventional FFT based 

MFCC method, reconstruction of the spectral envelope from the LPC coefficients are done and the residual 

signal energy is used to scale them back to their original energy level. Thirteen MFCCs were derived from the 

log of the mel bank outputs using the discrete cosine transform (DCT). Cepstral mean subtraction (CMS) was 

applied as a channel normalization technique [26], [30]. The variation of MFCCs from frame to frame of normal 

and neurological disordered voices is shown in fig.3 In the case of normal voice, it can be observed that the 

variation of the coefficients from frame to frame is static whereas in case of neurological disordered voice the 

variation is dynamic. This may be due to the fact that the impulses from the brain neurons of the neurologically 

disordered subjects are randomly varying.  
Fig. 4 shows the spectrum of a voice signal.  The most prominent difference between LPC and FFT 

spectral estimators is related to the way in which they describe spectral peaks and valleys. The LPC estimation 

of a spectrum which is a parametric representation yields a spectral envelope with good description of the peaks 

and valleys in the spectrum which describes the energy level of the signal. This spectral envelope marks the 

peaks of the formants of the voice frame as shown in fig. 4. Hence, it can be said that the LPC will enhance the 

formant energy which may be a predominant descriptive feature for identification of neurological disordered 

voice [30]. Hence, in the present work both FFT based MFCCs and LPC based MFCCS are considered as the 

features to GMM classifier for a comparative study. Figure 5 shows an important observation in the power 

spectrum of the collected data sample, that is, the formants energy of neurological disordered voice is more 

compared to normal voice. This may be due to the existence of vocal pathology; the subject has to use more 

amount of energy to produce the desired level of voice signal. 
 

 
Fig.3 Variation of MFCCs from frame to frame    Fig. 4 Spectrum of the voice signal (ah) 
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Fig. 5 Power spectrum of Normal and Disordered voice  Fig.6. Scatter plot of 2-D cepstral 

vector by means of Gaussian mixture. 

 

2.3 GMM classifier 

A GMM is a parametric probability density function represented as a weighted sum of Gaussian 

component densities. GMMs are commonly used as a parametric model of the probability distribution of 

continuous measurements or features in a biometric system, such as vocal-tract related spectral features in a 

speaker recognition system [32]. 

A Gaussian mixture model is a weighted sum of M component Gaussian densities as given by the equation, 

 

    P x ⎸λ =  wig(x ⎸µiƩi)     (2)

       

where x is a D-dimensional continuous-valued data vector (i.e. measurement or features), wi  , i=1,…..M , are 

the mixture weights, and  g(x ∣ µiƩi), i=1, …..,M  are the component Gaussian densities. Each component 

density is a D-variant Gaussian function of the form, 

  

   g x ⎸µiƩi =
1

2πD /2∣Ʃi ∣
 exp  −

1

2
   x − µi ′    x − µi 

−1
i    (3) 

 

With mean vector µi and covariance matrix Ʃi . the mixture weights satisfy the constraint that  wi
M
i=1 =1. 

The mean vectors, covariance matrices, and mixture weights from all component densities parameterize the 

complete GMM. The notation collectively represents these parameters [30]. 

 

    λ =  wi , µi , Ʃi     i = 1, ………,M    (4) 

 
GMMs are often used in biometric systems, most notably in speaker recognition systems, due to their 

capability of representing a large class of sample distributions. One of the powerful attributes of the GMM is its 

ability to form smooth approximations to arbitrarily shaped densities. The use of a GMM for representing 

feature distributions in a biometric system may also be motivated by the intuitive notion that the individual 

component densities may model some underlying set of hidden classes. For example, in speaker recognition, it 

is reasonable to assume the acoustic space of spectral related features corresponding to a speaker’s broad 

phonetic events, such as vowels, nasals, or fricatives. These acoustic classes reflect some general speaker 

dependent vocal tract configurations that are useful for characterizing speaker identity. The spectral shape of the 

ith acoustic class can in turn be represented by the mean µi  of the ith component density, and variations of the 

average spectral shape can be represented by the covariance matrix Ʃi .  because all the features used to train the 
GMM are unlabeled, the acoustic classes are hidden in that the class of an observation is unknown. Assuming 

independent feature vectors, the observation density of feature vectors drawn from these hidden acoustic classes 

is a Gaussian mixture [33]. MFCCs follows GMM distribution is as shown in fig.6. Hence, D-dimensional 

MFCCs can be modelled by GMM model of M-mixtures. 

 

2.3.1 Maximum Likelihood Parameter Estimation 

Given training vectors and a GMM configuration, it is necessary to estimate the parameters of the 

GMM, λ, which in some sense best matches the distribution of the training feature vectors. There are several 

techniques available for estimating the parameters of a GMM [4]. By far the most popular and well-established 

method is maximum likelihood (ML) estimation. The aim of ML estimation is to find the model parameters, 
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which maximize the likelihood of the GMM given the training data. For a sequence of T training vectors 

X =  x1 .  .  .  .  . x t
 , the GMM likelihood, assuming independence between the vectors, can be written as, 

 

    p X ⎸λ =  p xt  ⎸λ 
T
t=1       (5) 

 

Unfortunately, this expression is a non-linear function of the parameters λ and direct maximization is 

not possible. However, ML parameter estimates can be obtained iteratively using a special case of the 

expectation-maximization (EM) algorithm [34]. 

 

The basic idea of the EM algorithm is, beginning with an initial model λ, to estimate a new model λ’, 

such that  X ⎸λ′ ≥ p X ⎸λ  . The new model then becomes the initial model for the next iteration and the 

process is repeated until some convergence threshold is reached. The initial model is typically derived by using 

some form of binary vector quantization estimation. 
 

On each EM iteration, the following re-estimation formulas are used which guarantee a monotonic 

increase in the model’s likelihood value, 

 

Mixture weights                 w′i =
1

T
   i ⎸xt , λ 

T
t=1      (6) 

 

Mean     µ′i =
 Pr (i ⎸xt ,λ)λ t

T
t=1

 Pr (i ⎸xt ,λ)T
t=1

     (7) 

 

Variance (diagonal covariance)               σ′i
2 =

 Pr (i ⎸xt ,λ)xt
2T

t=1

 Pr (i ⎸xt ,λ)T
t=1

− µ′i
2    (8) 

 

 

2.3.2 MFCC-based GMM method 

The voice samples were analyzed with 20 ms interval with a overlapping of 10 ms with the previous 

frame and multiplied by a hamming window. A 13 dimension FFT based MFCCs were extracted and fed into a 

GMM-based detector enabling a final decision about the absence or presence of pathology. The GMM model for 

normal and neurologically disordered subjects voices (i.e. 𝜆N and 𝜆D) having 4, 6, and 8 mixtures were trained 

separately with the expectation-maximization (EM) algorithm to determine the model parameters such as mean 

vectors, covariance matrices, and mixture weights [35]. During the testing phase the log-likely hood of the test 

feature vector X={x 1 , x 2 , ..... x T )  is computed for both normal and neurologically disordered subjects voices 

models. Log likely hood ratio (LLR) for feature vector X is given by the equation [35] and this was repeated for 
LPC based MFCCs also 

   Λ X = log  p  
X

λN
  − log  p  

X

λD
        (9) 

 

The flow of the training and testing of the GMM model is as shown in fig.7. The histogram of the LLR 

estimated from normal and pathological voices after training process is shown in fig.8. The decision threshold 

ΛTH   is then set to adjust the tradeoff between rejecting pathological voices (false rejection) and accepting 

normal voices (false acceptance). The log- likely hood ratio is compared with ΛTH  and the voice is said to be 

normal if Λ(X) > ΛTH  and disordered if Λ(X) < ΛTH  . Fig. 9 shows false acceptance and false rejection plots 

versus threshold ΛTH  . Both lines cross over the equal error rate point (EER).  

 

III. Results And Discussions 
The performance of the system was assessed by averaging the results obtained from fivefold 

cross-validation scheme [29]. Table 1 shows FFT-MFCC based GMM classifier confusion matrix, 

accuracy, sensitivity and specificity for different number of the Gaussian mixtures. Specificity and 

sensitivity means the test’s ability to identify negative and positive results, respectively. The accuracy is 

the proportion of true results (both true positives and true negatives) in the dataset. The GMMs were 

trained using 4, 8, and 16 mixtures. The classification performance for the different mixtures is tabulated in 

table 1. It can be observed that the classifier performance for 8-mixture configuration is found to be 88.5%, 

and it is observed that as the mixtures are increased, the classifier goes into saturation. The equal error rate 

(EER) of the MFCC-based GMM method is shown in Fig.9. Figure 10 and 11 shows the ROC curve and 

the DET curve respectively when MFCC-based GMM method shows the best accuracy. The 

experimentation was repeated for LPC-MFCCs features as input to the GMMs for different mixtures and is 
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tabulated in table 2. It can be observed that the classification accuracy for 8 mixtures is enhanced to 

89.55% compared to the MFCCs based GMM, which is 88.5%. 

 

 
Fig. 7. (a) GMM training framework. (b) GMM testing framework 
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Table 1: Performance Of FFT-MFCC Based Gmm Classifier 
Method Confusion Matrix Sensitivity (%) Specificity (%) Accuracy (%) 

GMM-4 mixtures 90.5     9.5 

25.9     74.1 
90.5 74.1 82.3 

GMM-8 mixtures 88.1     11.9 

11.1     88.9 
88.1 88.9 88.5 

GMM-10 mixtures 97.6     2.38 

22.2     77.7 
97.6 77.7 87.1 

GMM-12 mixtures 92.9     7.14 

18.5     81.5 
92.9 81.5 87.2 

GMM-16 mixtures 100     0 

25.9     74 
100 74 87 

The best performance is highlighted in bold. 

 

Table 2: Performance Of LPC-MFCC Based Gmm Classifier 
Method Confusion Matrix Sensitivity (%) Specificity (%) Accuracy (%) 

GMM-4 mixtures 90.47     9.5 

18.5       81.5 

90.5 81.5 85.97 

GMM-8 mixtures 97.61     2.38 

18.5     81.5 

97.6 81.5 89.55 

GMM-10 mixtures 95.23    42.76 

18.51     81.48 

95.2 81.48 88.36 

GMM-12 mixtures 97.6     2.38 

22.2     77.7 

97.6 77.7 87.7 

GMM-16 mixtures 100     0 

33.3     66.6 

100 66.6 83.3 

The best performance is highlighted in bold. 

 

IV. Conclusions 
The MFCC based GMM classifier has shown to be a good classifier for detection of voice 

disorder showing a classification  accuracy of 88.5 % , but it can be observed that the classification 

accuracy has been enhanced to 89.55% for 8 mixture LPC-MFCC based GMM showing an improvement 
of 1%. Hence, it can be concluded that LPC-MFCC GMM is a better classifier for classifying neurological 

disorder voice from normal voices. There is a scope for the future work for implementation of multi class 

classifier to further classify the different neurological disorders. 
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