Automatic Generation of Compound Word Lexicon for Marathi Speech Synthesis

Sangramsing N. Kayte¹, Monica Mundada¹, Dr. Charansing N. Kayte², Dr.BhartiGawali*

1,3Department of Computer Science and Information Technology Dr. BabasahebAmbedkarMarathwada University, Aurangabad 2Department of Digital and Cyber Forensic, Aurangabad, Maharashtra

Abstract: This research paper addresses the problem of Marathi compound word splitting and its relevance to developing a good quality phonetizer for Marathi Speech Synthesis. The constituents of a Marathi compound word are not separated by space or hyphen. Hence, most of the existing compound splitting algorithms cannot be applied to Marathi. We propose a new technique for automatic extraction of compound words from Marathi corpus. Preliminary tests conducted on the algorithm have shown a split rate of 92 to 96% of the input compound words. Of these splits, around 83 to 87% are correct splits. A few modifications have been suggested, which will improve the accuracy of the splits. Finally, we observe an improvement of 1.6% in Marathi Grapheme-to-Phoneme conversion as a result of using a phonetized compound word lexicon, created by the above technique.

I. Introduction

Compound words are formed when two or more words are concatenated into a single word. Compounding is a highly productive word formation technique in Marathi. Compounding is also a common phenomenon in Marathi. Table 1 gives examples of a few Marathi compound words.

Compound Word	Constituents
Rāsāyanika	RāsāyanikA
sanyuga	SanyugA
āvāra	Āvāra

Table 1: Examples of Marathi Compound Words

Compound word lexicons play an important role in various domains of language technologies e.g. speech recognition machine translation [1] [5]. Identifying compounds is also necessary for assigning stress patterns correctly as stress patterns for compounds differ greatly from equivalent single word units [2].

In a Text-To-Speech (TTS) synthesis system, the G2P module converts normalized input orthographic text into underlying phonetic representation. Accurate phonetic transcription is highly desired for natural sounding speech synthesis. Compound word splitting plays a crucial role in Marathi G2P conversion, specifically for solving the schwa deletion problem [3] [4].

II. Schwa Deletion

Schwa deletion is a unique problem encountered in Marathi G2P conversion. Each consonant in Devanagari, the script used to write Marathi, is associated with an inherent schwa which is not represented in orthography. In some cases, this associated schwa is deleted depending on certain morpho-phonological factors and in others, it is retained. The written text, however, does not provide a direct clue about the deletion or retention of the schwa, thereby making it a challenging problem to address. Marathi word adacaṇa "अडचण", for example, is represented in orthography using the consonantal characters for ad, aca, na. The schwas (a) are inserted by the speaker while speaking out the word. Vowels other than schwa are explicitly represented in orthography.

A set of rules for schwa deletion in Marathi are reported in. The rules are based on the morpheme boundaries present in words. Word internal morpheme boundaries can be detected using a morphological analyzer. Unfortunately, high quality Marathi morphological analyzers are currentlynot available. Unavailability of such analyzers restricts the applicability of these rules.

Another set of rules were implemented in the Dhvani speech synthesis system [6] [7]. These rules work well for simple words but fail in the case of compound words. For example, Marathi compound word

 $R\bar{a}s\bar{a}yanikA$ "lower house of parliament" is obtained by joining two words: Rasa"people" and yanikA"gathering". In orthography, the word is represented using consonant and vowel forms of r, *a*, *s*, *a*, *ya*,*ni*, *kA*. Application of schwa deletion rules on this word would produce [r a s a y a n i k A] which is incorrect. Correct phonetic transcription [r a s a y a n i k A] is obtained if the two words are analysed separately. Hence, a lexicon of compound words along with their correct phonetic representation is very important for accurate phonetic conversion of input text.

III. Previous Work

Corpus driven method for compound splitting using a parallel corpus is reported in [6] [8]. Compound splitting and recombination for reducing out of vocabulary (OOV) words in large vocabulary speech recognition systems is reported in [1][9][10] An approach to learn compound splitting rules from monolingual and parallel corpora and its impact on statistical machine translation systems are reported in [11].

Statistical compound extraction techniques are reported in [6]. These methods require the constituents of a compound word to be space separated. Such methods are not applicable for Marathi compounds since constituents in a Marathi compound are not separated by space. To overcome this problem, a compound splitting algorithm has been developed [14][15][16].

IV. Compound Splitting Algorithm

The compoundextraction algorithm takes as input a text corpus and generates a lexicon with the compounds split into its constituent parts. The algorithm starts with the assumption that independently occurring words are valid atomic words.

A trie-like structure is used to store and efficiently match the words. Without loss of generalizability, the following description considers a compound word to be made up of two constituents. A *potential* compound word is detected if the currently processed word is part of a word already present in the trie or a word in the trie is a substring of the current word. For compounds with more than two components, the algorithm can be iteratively applied generating all constituent components. For each word (), there are several possibilities:

Case 1: is not present in the trie and is also not a constituent of any of the words currently present in the trie.

Case 2: is already present in the trie as an independent word.

Case 3: is actually the initial constituent of a compound word currently present in the trie as an independent word.

Case 4: is actually the second constituent of a compound word currently present in the trie as an independent word.

In *Case 1*, the algorithm inserts into the trie. In *Case 2*, no change is needed since is already present in the trie as an independent word. In *Case 3*, the algorithm generates the second constituent () for each of the potential compound words where is the first constituent. After the generation of's, the end node corresponding to in the trie becomes a leaf node. For each of the generated's , the algorithm checks for its presence in the trie. If is present in the trie, the algorithm marks the combination (

) as a compound word. If is not present in the trie, the combination () is inserted into the suspicion list. The algorithm in its present form does not locate *Case 4*, since the processing is performed left to right.

Before processing each, the algorithm checks for its presence in the suspicion list. If is present in the suspicion list as the second constituent, the entry () is removed from the suspicion list and is marked as a compound word. After this, is matched against the trie contents and actions are taken as per the case (*i.e. Case 1, 2, 3, 4*) to which belongs.

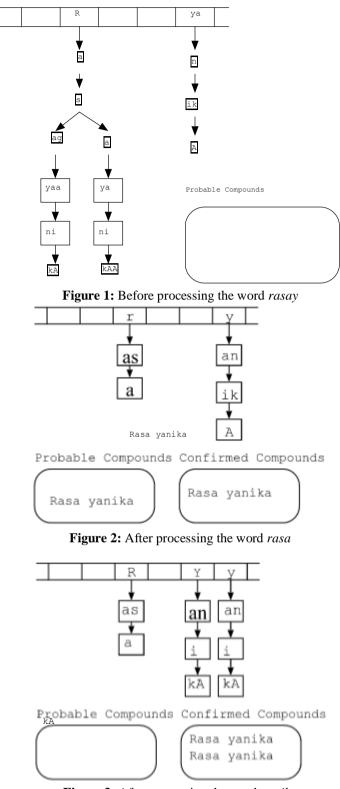


Figure 3: After processing the word yanika

To increase the number of potential compounds in the suspicionlist, the algorithmcan be runwithreversedwords. The forward pass (*i.e.* left to right processing of a word in its original form) is enough to split a compound word if all its constituents are present in the corpus as independent words.

To illustrate the algorithm, let us consider a sample lexicon with words in the sequence *rasayanikA*"folk tales", *Rāsāyanika*"lower house of parliament", yanika"gathering", *rasay*"people", *anika*"tale". If both constituents of a compound are present in the corpus, then the order of reading the compound and its constituent parts is irrelevant. Fig. 1 represents the trie contents after the wordsrasayanikA,

Rāsāyanika andyanikahave been read in. Suppose the word *raya* is input after this. The algorithm first checks for it in the suspicion list. After not finding it there, the word is matched against the contents of the trie generating the constituent forms *yanika* and yanikA. yanikA is already present in the trie but yanikA is not yet read in. Hence, rasa yanikA *is* marked as a compound word. But since yanikA is not present in the trie, *rasa* yanikA is inserted into the suspicion list. This state is shown in Fig 2.

Suppose the algorithm comes across the word yanikAlater. yanikA *is* present in the suspicion list as the second constituent. Hence, *rasa* yanikAis removed from the suspicion list and is marked as a compoundword. Then the algorithm matches yanikA *in* the trie and since it is not present, it is inserted into the trie.

Hence, at the end of the algorithm, the best possible atomic word forms are present in the trie with compounds decomposed into their constituent parts.

4.1. Marathi Post-processing

4.1.1. Stray Characters & Affixes

The algorithm described above is vulnerable to stray characters and affixes present in the corpus. Such characters can trigger wrong splits and also increase false positive rate. For example, *prais* a prefix in Marathi. Ideally, *prac*annot occur as an independent word. However, due to typographical errors or for other reasons, presence of such character combination in a text segment cannot be ruled out. If *prais* present, the algorithm wrongly splits *pranAm*into *pra*and *nAm*"name" (assuming *nAm*is also present in the text). Actually, *pranAm*is not a compound word. Hence, special care should be taken so that the algorithm doesn't consider affixes as valid words. A possible solution to this problem can be the use of a list of affixes. The algorithm can check the affix lexicon for the presence of each constituent and mark the word as a compound word only if none of the constituents is present in the affix list.

4.1.2. Length Based Heuristics

Length based heuristics can be used to keep away stray characters from being considered as valid words by the algorithm. But this strategy does not work very well for Marathi. In Marathi, words with very few characters have the potential to form compounds words. For example, the two character word *nav*"new" can form an array of compound words such as, *navvarsh*"new year" and *navjivan*"new life". In the current system, only single character words are treated invalid.

4.1.3. Consonant-Vowel (CV) Pairs

Consonant-vowel (CV) combinations can occur independently in Marathi text but they cannot be a constituent of a compound word. Hence, the algorithm should check that none of the generated constituents is a CV pair. Examples of valid Marathi CV pairs are ne and ki.

4.1.4. Problems Related to Word-forms

Another problem associated with Marathi compound splitting is related to root word and its different forms. Let us take the example of the Marathi root *sany*"wind" and one of its word-form sany"windy" which is a constituent of the compound word *sanyuga*"aeroplane". Constituents of the compound *sanyuga*aresanyanduga. Let us consider the case when the algorithm reads the words in the sequence *sanyuga*, *sany*, ugaanduga. After reading the first two words, the algorithm will split it into the parts sanyandugaand insert the combination into the suspicion list since the existence of the second constituent is not yet known. ugais not a valid Marathi word. Hence, even though both the constituents are present, the algorithm will fail in splitting the compound *sanyuga*into its correct constituent parts. A possible solution to this problem can be the detection of different splitting points and subsequently selecting the best split based on probabilistic measure. This feature, however, is currently not incorporated into the current system.

V. Experimental Results

In the first experiment, the compound extraction algorithm was used to generate a compound word lexicon. The experiment was carried out to observe the number of compound words extracted by the algorithm from a given text segment.

Total Words In Text Segment	2400329
Total Unique Words	246300
Total Unique Words Marked as Compound	48420
Proportion of Compound Words (as detected)	29.66 %

A second experiment was carried out to study compound splitting accuracy. A compound word lexicon was generated using the algorithm described above. Final tirecontents were also dumped since these words are the atomic word forms. Each word in the compound word lexicon forms one of the constituents of a compound word. The contents of the trie were merged with the compound word lexicon generating a combined lexicon. This experiment, in a way, tested the quality of the combined lexicon in terms of its coverage of independent word forms. Two sets of compound words (50 compound words each) were manually prepared. These lists were prepared without any knowledge of the words present in the generated compound word lexicon. A variant of the algorithm described above was used in this case. The algorithm first loaded all the words in the combined word lexicon. After this, words from the test files were matched against the loaded words and were split accordingly. The algorithm was allowed to cause splits only in the test words. The results are shown in Table 3.

Compound words for which all the constituents satisfied different criteria for independent words are included in the High Confidence List. Compound words in the low confidence list are the words for which the algorithm could not find one of its constituents in the corpus. These are the words which are finally present in the suspicion list. In Table 3, compound split precision and compound extraction rates are calculated based on the words included in both.

High & Low confidence lists. For example, in *Set 1*, the algorithm marked 58 of the total 60 words as compound words achieving a compound extraction rate of 92%. Out of these 58 (42 in high confidence list and 6 in low confidence list) marked compound words, 60 compound words are correctly split. Hence, the split precision rate is 87%.

	Set 1	Set 2
Total Words	50	50
Number of Confirmed Compounds	42	43
Number of Probable Compounds	6	3
Compounds Correctly Split	40	40
Correct Split Rate	87%	89%
Compound Extraction Rate	96%	92%

 Table 3: Accuracy of compound word split using our algorithm

The third experiment was carried out to study the improvement in Marathi Grapheme-to-Phoneme conversion resulting from the incorporation of the phonetic compound word lexicon into the Marathi G2P converter [4] [12]. A section of the Emille corpus was randomly selected [13]. The selected text segment was phonetized using Marathi G2P converter developed as part of the LLSTI initiative [6][12]. Words which were present in the phonetic compound lexicon were also analysed using rules and the two phonetic transcripts were manually compared. The results are shown in Table 4.

Table 4: Result of Marathi G2P Conversion	
ds Analysed	
opetised Using Compound Word Levicon	

Total Words Analysed	3497
Words Phonetised Using Compound Word Lexico	n 252
Lexicon Correct but Rule Incorrect	65
Rule Correct but Lexicon Incorrect	10
Lexicon and Rule Both Correct	173
Lexicon and Rule Both Incorrect	4

Effectively, phonetization of 55 words improved after incorporating the phonetic compound word lexicon into the Marathi G2P. Hence, a net improvement of 2% in Marathi G2P conversion is observed as a result of using the compound word lexicon generated by the algorithm presented in this paper. Moreover, out of the total 252 words phonetised using the lexicon, an improvement of 21.8% is observed.

VI. Conclusion

An effective algorithm has been proposed for splitting compound words in Marathi. The algorithm has been tested and found to be effective in splitting above 92% of the input compound words. Of these splits, around 89% are found to be correct. One of the possible approaches to increase the accuracy of the split is to allow for multiple splits (at different points in the same word) of every word, by not removing any suspect compound word from the trie. To get more potential compound words, the same algorithm can be applied a second time, after reversing each word, so that the second constituent of each compound word can be identified first. A near-exhaustive list of affix words of the language can be deployed to minimize or altogether eliminate wrong splits on account of prefixes and suffixes.

References

- [1]. Sangramsing N.kayte "Marathi Isolated-Word Automatic Speech Recognition System based on Vector Quantization (VQ) approach" 101th Indian Science Congress Jammu University 03th Feb to 07 Feb 2014.
- [2]. Monica Mundada, Bharti Gawali, Sangramsing Kayte "Recognition and classification of speech and its related fluency disorders" International Journal of Computer Science and Information Technologies (IJCSIT)
- [3]. Sangramsing Kayte, Monica Mundada, Dr. CharansingKayte "Di-phone-Based Concatenative Speech Synthesis Systems for Marathi Language" OSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 5, Ver. I (Sep –Oct. 2015), PP 76-81e-ISSN: 2319–4200, p-ISSN No. : 2319–4197
- [4]. Sangramsing Kayte, Monica Mundada, Dr. CharansingKayte "Di-phone-Based Concatenative Speech Synthesis System for Hindi" International Journal of Advanced Research in Computer Science and Software Engineering -Volume 5, Issue 10, October-2015
- [5]. Monica Mundada, Sangramsing Kayte, Dr. Bharti Gawali "Classification of Fluent and Dysfluent Speech Using KNN Classifier" International Journal of Advanced Research in Computer Science and Software Engineering Volume 4, Issue 9, September 2014
- [6]. Sangramsing Kayte, Monica Mundada, Dr. CharansingKayte "A Corpus-Based Concatenative Speech Synthesis System for Marathi" IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. I (Nov -Dec. 2015), PP 20-26e-ISSN: 2319 –4200, p-ISSN No.: 2319 –4197
- [7]. Sangramsing Kayte, Monica Mundada, Dr. CharansingKayte "A Marathi Hidden-Markov Model Based Speech Synthesis System" IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. I (Nov -Dec. 2015), PP 34-39e-ISSN: 2319 – 4200, p-ISSN No.: 2319 –4197
- [8]. Sangramsing Kayte, Monica Mundada, Dr. CharansingKayte "Implementation of Marathi Language Speech Databases for Large Dictionary" IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. I (Nov -Dec. 2015), PP 40-45e-ISSN: 2319 –4200, p-ISSN No. : 2319 –4197
- [9]. Sangramsing Kayte, Monica Mundada, Santosh Gaikwad, Bharti Gawali "Performance Evaluation Of Speech Synthesis Techniques For English Language "International Congress on Information and Communication Technology 9-10 October, 2015
- [10]. Sangramsing Kayte, Monica Mundada, Dr. CharansingKayte "Performance Calculation of Speech Synthesis Methods for Hindi language IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 5, Issue 6, Ver. I (Nov -Dec. 2015), PP 13-19e-ISSN: 2319-4200, p-ISSN No. : 2319-4197
- [11]. Sangramsing Kayte, Monica Mundada "Study of Marathi Phones for Synthesis of Marathi Speech from Text" International Journal of Emerging Research in Management & Technology ISSN: 2278-9359 (Volume-4, Issue-10) October 2015
- [12]. Sangramsing Kayte, Monica Mundada, Dr. CharansingKayte "Di-phone-Based Concatenative Speech Synthesis System for Hindi" International Journal of Advanced Research in Computer Science and Software Engineering -Volume 5, Issue 10, October-2015
- [13]. Emille, 2003. The EMILLE (Enabling Minority Language Engineering) Project. (<u>http://www.emille.lancs.ac.uk</u>).
 [14]. Sangramsing Kayte, Dr. Bharti Gawali "Marathi Speech Synthesis: A review" International Journal on Recent and Innovation
- Trends in Computing and Communication ISSN: 2321-8169 Volume: 3 Issue: 6 3708 3711
 [15]. Monica Mundada, Sangramsing Kayte "Classification of speech and its related fluency disorders Using KNN" ISSN2231-0096 Volume-4 Number-3 Sept 2014
- [16]. Monica Mundada, Sangramsing Kayte, Dr. Bharti Gawali "Classification of Fluent and Dysfluent Speech Using KNN Classifier" International Journal of Advanced Research in Computer Science and Software Engineering Volume 4, Issue 9, September 2014.