
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) 
Volume 5, Issue 6, Ver. II (Nov -Dec. 2015), PP 98-107
e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197 
www.iosrjournals.org

DOI: 10.9790/4200-056298107                                 www.iosrjournals.org                                     98 | Page

Real-Time Reconstruction of Discrete-Time Signals in High-
Performance Digital Control Systems: Analytical Evaluation of 

Common Interpolation Techniques

A. Mumuni1, F. Mumuni2  
1 (Electrical/Electronics Engineering Department, Cape Coast Polytechnic, Cape Coast, Ghana)

2 (Electrical Engineering Department, University of Mines and Technology, Tarkwa, Ghana)

Abstract: Complex computational problems arising in control systems that employ digital signal processing for 
control tasks such as precision motion control, real-time processing of sensor data and machine vision are 
tedious, requiring significant amounts of calculation of mathematical functions. In addition, such problems need 
to be solved in a strictly limited time, so the mathematical computations must be optimized for speed. One of the 
most important operations performed by such systems is the reconstruction of digital signals. Traditionally, in 
high-end applications, this is done using advanced interpolation techniques. The computation-intensive 
requirements of such applications require the formulation of the interpolation problem in a way that is efficient 
for computer execution. However, the choice of interpolation technique is not always straight-forward, as it 
depends on the nature and size of the problem. The present paper undertakes analytical study of the common 
interpolation techniques and synthesizes corresponding algorithms for computing them. A comparative analysis 
of the various interpolation methods provides an accessible means for selecting the most suitable algorithm for 
a given problem.
Keywords: Computational Complexity, Digital Signal Reconstruction, DSP, Interpolation

I. Introduction
In digital control systems, very often, there is a need to reconstruct digital signals after processing to 

obtain original analog signals from the discrete-time samples.  In practice, this can be achieved by a number of 
techniques. These include simple sample-and-hold, fractional delay filtering, classical interpolation techniques, 
as well as frequency domain methods [1-2]. In low-end applications, reconstruction of digital signals is carried 
out using sample-and-hold circuits to achieve a zero-order hold digital to analog conversion [3-4]. In 
applications where high precision is required, polynomial interpolation techniques may be used. The simplest 
form of interpolation is linear interpolation or first-order hold, which approximates values between successive 
samples by straight lines [5]. In situations where linear interpolation does not meet the required accuracy, higher 
order interpolation formulas are used [2, 6].  

Reconstructing analog signals from digitized signals using higher order polynomial interpolation 
methods requires a significant amount of computational resources. In practical applications, it is often necessary 
to develop algorithms which reduce all calculations to a sequence of arithmetic and logical operations necessary 
for computer execution. At the same time, it is also important to pay close attention to the amount of 
computational time required to solve these problems. In this regard, the quality of algorithms is assessed on the 
basis of the order of growth of time needed to solve the problem. This figure of merit, in technical literature, is 
known as the computational complexity of an algorithm. Thus, computational complexity, in this context, is the
time spent in computing solutions as a function of the problem size (i.e. input data size and information content). 
It is determined largely by the number of elementary operations needed to solve a particular problem. Despite 
the increasing speed of modern computers, the complexity of advanced interpolation algorithms is still a key 
issue in many engineering applications [7]. Practical implementation of many mathematical solutions has been 
impeded by the computational complexity of the mathematical algorithms [8].

The interpolation problem consists of converting discrete data, defined only at discrete points such as

     0 0 1 1
, ,  , ,  ... , ,

n n
x y x y x y to a continuous output (Fig. 1). In essence, this amounts to finding a smooth 

curve that passes through all the discrete points  ,
i i

x y . Thus, there is the need to determine the values of the 

function at points which do not coincide with the given points (i.e. for
i

x x ). This means finding a function 

 f x   that satisfies the interpolation condition

 i i i
f x f y  (1)

The points ix are called nodes of interpolation.        
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Fig. 1. Interpolation of discrete data.
The most straightforward method of doing this is polynomial interpolation, where an nth order 

polynomial that passes through 1n  data points is solved:
2

0 1 2
( ) ( ) ... n

n i
n

x P x C C x C x C x       (2)

This approach is based on Weierstrass approximation theorem [9-11], which stipulates that any 

segment  ,a b of a function ( )P x can be sufficiently well approximated by an analytical expression which is an 

algebraic polynomial. To construct the polynomial ( ),nP x it is necessary to find the coefficients 0 1 2, , , ... .nC C C C

The coefficients are determined from the interpolation condition ( ) ,n i iP x y 1, 2, ...,i n . In practice, however, 
the number of nodes may be very large; leading to extreme difficulty in solving (2) by classical methods. The 
complexity of solving (2) by Gaussian method, for example, is of the order O(n3) [12-14].      In practical 
situations, the desired interpolation polynomial is constructed without solving this system. A number of 
techniques have been developed for doing this [15-18].

This work investigates common interpolation techniques from the point of view of realizing efficient 
algorithms for reconstructing discrete-time signals. The main objective of this analytical study is to provide 
accessible means of comparing the computational complexity of common interpolation techniques with the view 
of finding the most appropriate choice for a particular problem.

II. Classical Interpolation Techniques
Notwithstanding the proliferation of many interpolation algorithms, classical interpolation methods are 

still very popular. One reason for their popularity is that they have been developed long ago and are well-
studied, they are efficient, and have proven reliable for practical applications.  Also, many of the newer 
techniques, despite their computational efficiency, from a practical point of view of software implementation 
simplicity, have intricate formulations, making them less attractive than conventional interpolation techniques.

2.1. Lagrange technique
A more efficient alternative to reconstructing sampled data by solving the interpolation problem in 

canonical form is Lagrange polynomial formula [19]. The Lagrange interpolation method may also be used to 
design FIR, IIR, as well as adaptive Filters [20-21]. To construct the Lagrange polynomial for an arbitrary part 

of a segment  ,a b containing 1k  points 1
,  , ...,  

i i i k
x x x

  , an algebraic polynomial ( )
km j

Q x is chosen such that 

1,
( )

0,
km j

j m
Q x

j m










.  The polynomial is zero for every x except 
m

x x (i.e.
1

,  , ..., 
i i i k

x x x
 

are the roots of 

this polynomial). So the polynomial ( )
km j

Q x can be written in the form

                                       1 1 1
( ) ( )( )...( )( )...( )                                            (3)

km i i m m k
Q x c x x x x x x x x x x

  
     

                                   
The constant c is determined from the condition ( ) 1

km j
Q x  by substituting 

m
x x in (3)

                                   1 1 1

1
(4)

( )( )...( )( )...( )
                                       

m i m i m m m m m k

c
x x x x x x x x x x  


    

and

                                 

1 1 1

1 1 1

( )( )...( )( )...( )
( )  (5)

( )( )...( )( )...( )
                                

i i m m k

km
m i m i m m m m m k

x x x x x x x x x x
Q x

x x x x x x x x x x

  

  

    


    
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( )
km

Q x are known as Lagrange basis polynomial.

The Lagrange polynomial for the chosen segment is, thus, written as

                                

1 1 1

                                                                          

1 1 1

( )( )...( )( )...( )
( ) (6)

( )( )...( )( )...( )

i k
i i m m k

k m

m i m i m m m m m km i

x x x x x x x x x x
P x f

x x x x x x x x x x


  

  

    


    


If it is required to interpolate the whole interval  , ,a b then 0,  ,i k n  and the Lagrange polynomial has the 

general form

                      

0 1 1 1

0 1 1 10 0 0

( )( )...( )( )...( ) ( )
( )                        (7)

( )( )...( )( )...( ) ( )

nn n
n i n j

n i
i

i i i i i i i n i ji i j

j i

x x x x x x x x x x x x
P x f f

x x x x x x x x x x x x

 

   


     
 

     
  

   
Thus, the degree of the polynomial is n and for 

i
x x all terms in the summation operator reduce to 

zeros except the th
i j terms, which are ,

i
f thereby satisfying the interpolation condition (1).

As the terms of the factor ( )
ni

Q x in relation (7) depend only on the choice of nodes 
i

x and the points x , 

and not on the function   ,f x the factors
i

f can be computed only once and used in the construction of 

interpolation polynomials.

Computational complexity Lagrange interpolation algorithm

The constructive validation of Lagrange interpolation technique provides a method to construct the 
interpolating polynomial in the form expressed in (7). The method is stated in the following steps:

1. Computation of the Lagrange basis 
0

( )
( )

( )

n
j

i ji

ni

x x
Q x

x x







2. Multiplication of each thi basis by the corresponding functional value 
i

f

3. Summation of each product term ( )ni iQ x f

Recalling that the Lagrange coefficients ( )niQ x of a function ( )i iy f x for any given segment  ,a b are 

determined only by the nodes ix and the points ,x where it is required to compute the value of the polynomial. 
So if the calculations are carried out according to (5) above, the calculation of each coefficient (consisting of 

1n  nodes) of the Lagrange basis requires 1n  elementary multiplications, n divisions, and 2n additions. 

Obviously, it is necessary to make 1n  iterations to compute all the polynomials (i.e.
0
( ),P x

1
( ),P x …, ( )

n
P x ). 

Consequently, the computation of the Lagrange basis involves:  

    21 1 1n n n     multiplications

  2 2  1    2 2n n n n    additions

  2   1      n n n n    divisions

The number of operations in step two is  1n  multiplications, and in step three n additions. 

So there are, in total, 22 3  n n additions,   2  n n multiplications, and   2  n n divisions.

2.2. Newton Interpolation Method
The Lagrange interpolation polynomial is inconvenient in cases where the nodes may need to be 

updated. If the task is formulated such that the addition of an extra point would require only the addition of a 

single polynomial of degree  1n  to the thn degree Lagrange polynomial, then this addend can be found by 

taking the difference of the two Lagrange polynomials of degree  1n  and n. Simple transformations of the 

Lagrange interpolation polynomial will lead to the following expression:

                                                           
  0 1

1

( ) ( ) ( ) ( ) (8)                                          
n

n i i

i

P x P x P x P x



                                                              

where ( )iP x is Lagrange polynomial of degree .i
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If we let 1( ) ( ) ( )i i iQ x P x P x  , then ( )iQ x is a polynomial of degree i whose value is zero at 0x x , 

1x x , 2x x , ... , 1ix x  . Therefore, the polynomial ( )iQ x can be written as

0 1 1
( ) ( )( )...( )

i
i iQ x C x x x x x x


    , where iC are coefficients at 0x x , 1,x x 1.ix x  Therefore, the 

modified Lagrange polynomial (8) can be rewritten as 1 0 1 1( ) ( ) ( )( )...( ).n n n nL x L x C x x x x x x     

Recursively expressing all the polynomials 
1 2
, ,L L etc. in a similar way leads to another form of 

representing the Lagrange interpolation polynomial, which is called Newton interpolation polynomial [22]:

               

1

0 1 0 2 0 1 0 1

0 0

( ) ( ) ( )( ) ... ( )( )...( ) ( ) (9)     
in

n n n i j

i j

N x C C x x C x x x x C x x x x x x C x x




 

            
                       

1 2, , ..., nC C C are known as Newton coefficients.

The Newtonian bases are 0 0 1 0 0 11, ( ), ( )( ), ...( )( )...( )nx x x x x x x x x x x x       .

In the general formulation of the Newton interpolation polynomial (9) the Newton coefficients iC are computed
from the interpolation condition (1):

                                                   

1 11

0

0 0 0

( ) ( ) (10)                                     
j ji

i i j i k i k

j k k

C f C C x x x x
 

  

    
 
  

  
Calculating the coefficients by this approach is computationally demanding. In practice, it is often 

appropriate to compute the coefficients using Newton’s divided differences [23]. If 0 1 2 ... kx x x x    , then,
the divided differences are defined as follows [24]:

Zeroth order divided difference    ( )i i if x f x f  , 0,1, 2, ... .i n The first order divided difference is

  1

1

1

[ ] [ ]
, ,

i i

i i

i i

f x f x
f x x

x x











  and the second order divided difference  is

  1 2 1

1 2

2

[ , ] [ , ]
, , .

i i i i

i i i

i i

f x x f x x
f x x x

x x

  
 







It can be seen that higher order divided differences are defined recursively using lower-order ones. 

Thus, 
thk order divided difference for the section  ,i i kx x  can be found through ( 1)thk  order divided 

difference by the recursive formula   1 2 1 1

1 2

[ , , ..., ] [ , , ... ]
, , , ..., ,

i i i k i i i k

i i i i k

i k i

f x x x f x x x
f x x x x

x x

     

  







where 1, 2, ...,k n ; 0,1, ...,i n k  ; n degree of the polynomial.

It is often reasonable to calculate the divided differences only for neighboring values of the discrete
data. In this case, a higher order divided difference is calculated from two preceding ones of lower orders [25].  
Hence the Newton coefficients 0 1 2, , , ... nC C C C can be expressed through divided differences as follows:

0 0 0[ ],C f f x 

1 0 1 0

1 0 1

1 0 1 0

[ ] [ ]
[ , ],

f f f x f x
C f x x

x x x x

 
  

 
2 1 1 0

1 2 0, 12 1 1 0
2 0 1 2

2 0 2 0

[ , ] [ ]
[ , , ],

f f f f

f x x f x xx x x x
C f x x x

x x x x

 


   
 

   
   
   

and, 0 1[ , , ..., ]k kC f x x x .

Thus, for the purpose of interpolation function on the interval  ,  
i i k

x x


the Newton polynomial, based 

on divided differences, can be written in the form

                             
   1 1 2 1( ) , ( ) , , ( )( ) ...k i i i i i i i i iN x f f x x x x f x x x x x x x            

                                          
 1 1 1, , ..., ( )( )...( )                                  (11)i i i k i i i kf x x x x x x x x x                                  

                  

Computational complexity of Newtonian interpolation algorithm

Computing the value of the interpolation polynomial in the Newton form can be carried out in the 
following steps:

1. Finding the Newton coefficients iC through divided differences
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2. Computing the value of the polynomials (9) using the Newton coefficients 0 1 2, , , ... nC C C C

To perform the first operation, one needs to carry out 1n  additions and 1n  divisions for each node
i

x . This 

requires n iterations each for each of the arithmetic operations. Hence, the number of additions would be 

1 1

( 1)
( 1) , 

2

n n

i i

n n
n i i

 


     and the number of division operations would also be same.

Calculation of the polynomial 
n

P (step 2) requires 1n  additions through n iterations, plus additional n

summations for the terms  .i j
C x x Thus, for interpolation of 1n  nodes, the number of addition 

operations:

1 1

( 1) ( 3)
( 1)

2 2
.

n n

i i

n n n n
n n i n i n

 

 
        

Similarly, there would be 1n  multiplications through n iterations:

1 1

( 1)
( 1)

2
.

n n

i i

n n
n i i

 


    

Thus, total number of each operation is 2 2n n additions,  21

2
n n multiplications, and  21

2
n n

divisions.

2.3. Spline Interpolation
The Spline is a form of piecewise polynomial method used for interpolating discrete points. In a 

piecewise polynomial interpolation the segment  ,a b is divided into sub-segments having a smaller number of 

interpolation nodes. Lower degree interpolation polynomial can then be used on each of these segments. The 
most widely used piecewise interpolation method is cubic spline interpolation. Cubic spline has a feature that 
each partial interval is represented by a third degree polynomial, and on the whole interval of interpolation, it is 
continuous together with its first and second derivatives [26-28].

On each interval 
1

[ , ]
i i

x x


the cubic spline has the form [29]

                               
2 3

1 1 1
( ) ( ) ( ) ( )i i i

i i i i i i
S x a b x x c x x d x x f

  
        , 1[ , ]                             (12)i ix x x                 

Thus, the spline satisfies the Lagrange interpolation condition

                                                                    
( )

i i i
S x f ,  0,1, 2, ...                                                              (13)i n    

The spline (12) on each of the segments 1[ , ]i ix x , 1, 2, ...i n is defined by four coefficients, and,

therefore, for its construction on the whole interval  ,a b 4n equations are needed to determine the coefficients. 

Condition (13) yields 2n equations. As noted, the spline ( )iS x , together with its first and second differentials, is

continuous in all internal nodes.  The condition of continuity of the differentials ( )iS x and ( )S x gives 2( 1)n 
additional equations.  Thus, there are 2 2 1( ) 4 2n nn   equations. The two missing conditions are 

determined in different ways. They may be obtained from the so-called boundary conditions [30-31], which are 
assigned on the basis of physical properties or other considerations related to the interpretation of the features of
the discrete data. These include reference to first or second derivatives of the extremes of the intervals, or 
periodicity conditions.  To obtain the remaining two unknowns, here we use the Free Boundary Conditions:
                                                                          ( ) ( ) 0                                                                     (14)S a S b                   

The result is a system of 4n linear equations for determining the unknown coefficients
, , , , 

i i i i
a b c d

1, 2, ...,i n . Preliminary analysis of these equations and a number of simple transformations lead to a fairly 
simple sequence of operations for finding the values of these coefficients as follows.

On the interval 1[ , ]i ix x the second derivative of the spline ( )iS x is a straight line with slope im , and 

can be written in the form 
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( ) ( )i i i iS x m x x    , where i is a constant. Since ( )S x is a linear function on 1[ , ]i ix x , its form is 

completely determined by its two extreme values 1i  and  i at the ends of the interval 1[ , ]i ix x . 

1i i

i

i

m
h

  
 , So

1

1( )
i i

i

i i

i
x x x x

S x
h h

 




    for 1[ , ],i ix x x where 1i i ih x x   , ( ).i iS x 

Integrating ( )S x twice gives another form of the cubic spline representation

                                             

   
3 3

1

1 1

( ) ( )
( ) (15)

6 6
                     i i

i i i i i i

i i

x x x x
S x A x x B x x

h h
  

 

 
     

             
Where 

i
A and 

i
B are the constants of integration. According to the interpolation condition ( ) ,i i iS x f

consequently, letting
i

x x , yields
2

( )
6

i
i i i

i i i

h
S x f B h  

  
or  

6
.

i
i

i i

i

hf
B

h
 

Also if we let
1i

x x


 and noting that 1 1 1( ) ( )i i i iS x S x   , we obtain
3

1 1
1 1

( )
Th) us

6
,( . i

i i
i i i i

i

h
S x f A h

h
 

 
  

1

1
6

.
i

i

i i

i

hf
A

h





 

Substituting
i

A and 
i

B in equation (15) gives

             

3 2 3 2

1 1 1

3 1 1

( ) ( ) ( ) ( )
( ) (16)

6 6
        i i i i i i i i

i i i

i i i i

i

x x x x x x h x x x x h x x
S x f f

h h h h
   

 

       
   

                                   
From (16) the one-sided derivatives for 1 2 1, ,  ... ,  nx x x  using property that the spline is continuous 

over 
1

[ , ]
i i

x x


can be obtained:

                                                                     

1

1
( 0) (17)

6 3
                                    i i i i

i i i

i

h h f f
S x

h
  




    

                                                                

1 1 1

1

1

( 0) (18)
3 6

                               i i i i

i i i

i

h h f f
S x

h
   






     

Equating (17) and (18) for 1, 2, ..., 1i n  , we obtain 1n  equations of the form

                                                             

1 1 1 1

1 1

1

(19)
6 3 6

                         i i i i i i i i

i i i

i i

h h h h f f f f

h h
     

 



  
   

This equation can be written in the matrix form [32] A q  with 1n  unknowns i ( 1, 2, ..., 1i n  ),
where

1 2 2

2 3 32

2 1 2
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1 1
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6 3
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h h h
h

h h h

  

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 
 
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Thus, in matrix form the equation is

                                                 

1 1 1 1

2 2 2 2 2

2 2 2 22

1 1 1 1

0 0 0 0 0

0 0 0 0

                                  (20)

0 0 0 0

0 0 0 0 0

n n n nn

n n n n
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    
    
    
    
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.i i i i i i i i
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i i

h h h h f f f f
c a b q

h h

   



  
    

Solving the spline interpolation requires solving the tridiagonal matrix A [33]. The solution of such 
systems can be organized in a way that does not include the zero elements of the matrix, thereby saving memory 
and decreasing the required amount of computation. This method in mathematics literature is called Thomas 
algorithm [34]. Thomas algorithm consists of two stages - forward substitution and backward substitution. 

Forward substitution consists in calculating the auxiliary coefficients 
i

 and 
i

 , whereby each unknown i is 

expressed in terms of 1i  :

                                                               1( )i i i i     , 1, 2, ..., 1                                                   (21)i n 

From the first equation of (20), 
1 1

1 2

1 1

.
b q

a a
   

    

But from (21) 1 1 2 1.     

Thus, equating the two relations equations gives

                                                                               

1

1
1

1
1

1

(22)                                                              

b

a

q

a





 









Now putting 1 1 2 1      in the second equation of (20):

 2 1 2 1 2 2 2 3 2.c a b q        Thus, 2 can be expressed through 3 :

2 2 3 2 1
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q b c
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 



 


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2
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b

c a
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
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2 2 1

2

2 1 2

.
q c
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








Similarly, all auxiliary coefficients i and i can be calculated by the recursive formulas

                                                                   

1

1

1
(23)                                                         
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If we let 1i i i ie a c   , then 
i

i

i

b

e
   and 1 .i i i

i

i

q c

e


 



Backward substitution consists of recursively calculating i . This involves, first, finding 1n  using 
equation (21) and the last equation of the tridiagonal matrix (20).

                                                               1 1 1 (24)                                                       N NN N                 
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                                                                1 (25)                                                      N N N N Nq a c   
Eliminating 1N  from the two equations gives

                                                                                                       

1

1

(26)                                                        N N N
N

N N N

q

a c

 











Then, using the formula (21), and the previously calculated coefficients 

i
 and 

i
 according to formulas (22) 

and (23), we can successively calculate all unknowns 11 2, ,...,n n    .

Computational Complexity Of Cubic Spline Interpolation Algorithm

From the above analysis, the solution of the spline S(x) requires only finding , , ,  and i
i i i i

h A B q  .

The steps involved in calculating can be summarized as follows:

1. Computation of  i
h

requires 1n  additions

2. Computation of  
i

A and 
i

B both require 2( 1)n  divisions, 1n  multiplications and 1n  additions 

each

3. Computation of  
i

q requires 2( 1)n  additions and 1n  divisions

4. Computation of  i involves a number of steps:

 Computation of 
1

 and 
1

 as per (22). This requires 2 division operations

 Computation of 
i

 and 
i

 ( 2, 3..., 1i n  ) as per (23). This requires 2( 2)n  additions, 

2( 2)n  multiplication, and 2( 2)n  divisions

 Computation of n as per (26). This requires 2 additions, 2 multiplications, and 1 division 
operation

 Computation of i ( 1, 2, ...,1i n n   ) as per (21). This requires 1n  additions, and 1n 
multiplication

Hence, the total number of operations is 7 6n  additions, 5 3n  multiplications, and 7 4n 
divisions.  This gives a total operation count of19 13n  .

Noting that the coefficients 
i

 and 
i

e are defined solely by the choice of nodes and do not depend on 

the functional values iy , computation can be reduced if there is the need to solve a series of problems involving 

different functional values at predetermined nodes.  In this situation, i and 
i

e are calculated only once. Only 

i are computed for subsequent problems. This reduces the number of operations by 3( 1)n  , resulting in

16 10n  total number operations. Thus, the total number of operations involved in computing the spline  S x

is18 17n  . If we are carrying out a series of analysis involving the same nodes, subsequent computation are 
reduced to15 14n  .

III. Results And Discussion
Table 1 summarizes the results of the foregoing analysis. The last column is the total count of all 

operations, N. This is plotted against input data size, n in Fig. 2 with a logarithmic scale on both axes. It is worth 
noting that in most practical cases, addition, multiplication and division operations do not cost the same.  But 
since the durations of these basic operations are known, it is usually straight-forward to compute the total cost in 
terms of the number of machine cycles. 

Table 1.  Summary of computational complexity of classical interpolation methods
Additions Multiplications Divisions Total

Lagrange 22 3  n n 2  n n 2  n n    
22 3n n

Newton 2 2n n  20.5 n n  20.5 n n    
24 5n n

Cubic Spline 7 6n  5 3n  7 4n     19 13n 
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In high performance digital control systems with real-time requirements, the interpolation problem 
usually needs to be solved within a strictly short duration, say a few milliseconds. The choice of a good 
interpolation algorithm allows modern DSP systems not only to provide high accuracy and performance, but 
also extend the magnitude of tasks that can be performed. For instance, is if a task required 100 milliseconds and 
a digital signal processor with processing speed of 1 million floating point operations per second (MFLOPS) is 
employed, the maximum number of discrete inputs that can be interpolated would be 10000, 400, and 500 for 
the spline, Lagrange and Newton, respectively (Fig. 2). It is obvious that for the spline algorithm, increasing 
processor speed by a factor of 100 results in an increase problem size in the order of 100. For the Lagrange and 
Newton interpolators, a speed increase by 100 times results in only a 10 times increase in problem size. 

Fig. 2. Comparison of computational complexity of common interpolation methods.

On the basis of this analysis, it can be said that the Cubic Spine interpolation algorithm is the best 
choice (for data points greater than 8). The Lagrange formula also outperforms Newton’s. However, as noted 
above, if there would be the need to update interpolating data, then Newton’s would be a better choice.

In general, the complexity of an algorithm is evaluated in order p of magnitude of input data n, and is 

denoted ( ),pO n so called big-O notation [35-36]. In this representation, only the fastest growing (highest order) 

term is considered; all terms of lower order are ignored. For example, the time complexity of the Lagrange 

algorithm is equal to 24 5 ,n n but its computational complexity is of order 2n and is expressed as 2( ).O n

Likewise, Newton interpolation formula is 2( )O n and the cubic spline is ( )O n However, there are situations 

where it is useful to know the exact relationship of the dependence of complexity on input data. This is 
especially so when a small number of input data is to be interpolated, or when the interpolation formula contains 
a large constant which can have a significant effect on the quality of the algorithm.  On the graph of Fig. 2, it 
can be observed that the Lagrange formula is the best for a task involving 2 to 8 data inputs. Other factors, such 
as available memory resources, required accuracy, and the nature of signals, may also influence the choice of 
algorithm. For instance, if the signal is to be sampled at a much higher rate than the analog signal frequency, 
then the Lagrange interpolation formula is preferred to the Spline [26]. Also, some classes of algorithms may be 
less stable for certain types of problems.

IV. Conclusion
The study shows that a number of interpolation methods can be used to construct an approximate 

analog output from digital signals. The required accuracy can be achieved by all the above methods of 
polynomial interpolation. However, the practical implementation of the different interpolation techniques 
requires different computational resources. So in addition to the accuracy of approximation of the digitized 
signals, one should take into account the CPU time required to construct these signals. The present study 
attempted to analyze and compare the most popular classical interpolation methods used in digital signal 
processing and digital control systems for the purpose of reconstructing discrete-time signals. The results of the 
study can be used as a basis for selecting the most appropriate algorithm for a particular interpolation task. It is 
also expected that this study will serve as a basis for further investigation into the issues of effective use of 
interpolation algorithms for reconstructing discrete data. For example, further theoretical and experimental study 
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can be conducted on the effectiveness of parallel implementations of interpolation methods on computer 
systems of different architectures.
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