
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 6, Issue 2, Ver. I (Mar. -Apr. 2016), PP 58-65

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

DOI: 10.9790/4200-0602015865 www.iosrjournals.org 58 | Page

Fused Floating Point Arithmetic Unit for Radix 2 FFT

Implementation

Prasanna Palsodkar
1
, Ajay Gurjar

2

1
(Department of Electronics Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India)

2
(Department of Electronics & Telecomm. Engineering, Sipna’s College of Engineering & Technology,

Amravati, India)

 Abstract : This paper describes the design and implementation of user defined fused floating-point

arithmetic operations that can be used to implement Radix 2 butterfly Fast Fourier Transform (FFT) for

complex numbers used in Digital Signal Processing (DSP- C) processors. This paper reports the

comparison of area, delay and power of fused floating point modules as compared to discrete floating

point with reference to Radix 2 butterfly structure. The design is implemented and simulated by targeting

Xilinx vertex 5 FPGA device. Here we have achieved reduction in area (in terms of LUT required) by

27.09%, reduced delay by 17.10%, reduction in power consumption by 11 % and energy is reduced by

26.22% as compared to discrete implementation.

Keywords: Floating point, DSP, Area, Power, Delay, FFT

I. INTRODUCTION
In past, many Digital Signal Processing (DSP) applications used fixed point arithmetic due to the

high cost (in delay, silicon area, and power consumption) of floating-point arithmetic units [8]. Floating-point

arithmetic is much useful in the implementation of various DSP applications as it allows the designer and

the user to concentrate on the algorithms and architecture without worrying about the numerical issues

[1, 6]. Many applications use floating-point hardware to perform DSP tasks in real time and hence overcome

the limitations imposed by the use of fixed- point numeric systems. In realization of modern general purpose

processors, fused floating-point multiply add module have become attractive since their delay and silicon

area is often less than that of a discrete floating-point multiplier followed by a floating point adder.

Further the accuracy is improved by the fused implementation since rounding is performed only once (after

the multiplication and addition) [3]. This work extends the consideration of fused floating-point arithmetic

operations that are frequently encountered in DSP applications [6]. The Fast Fourier Transform is a case in

consideration since it uses a complex butterfly operation. For a radix-2 implementation, the butterfly consists

of complex operations of multiplication, addition and subtraction of the same pair of data. This butterfly

operations can be implemented with fused primitives, i.e Fused Two-Term Dot-Product Module, and Fused

Add-Subtract module [1].

II. RELATED WORK
This section introduces fixed-point computer arithmetic and its limitations, the IEEE-754

floating-point standard, and current usage of combined (fused) arithmetic functions, a quick

introduction to the Fast Fourier Transform (FFT), floating- point and FFT error analysis.

II.I DSP processors Arithmetic Overview

DSP processors arithmetic is concerned with the hardware realization of mathematical formulas,

algorithms and complex models from a theoretical world. Hardware functions calculate arithmetic’s in both

fixed-point and floating-point (Scientific Notations) [6].

II.II IEEE-754 Floating Point Standard

The IEEE Standard for Floating-Point Arithmetic (IEEE-754) is a technical standard established by

the Institute of Electrical and Electronics Engineers [5]. It is the most ubiquitous standard for floating-point

computations representation in today’s microprocessors, including Intel-based Processor’s, Macintoshes and

UNIX platforms. IEEE floating point numbers have three basic components: a sign, an exponent and a

significant. The significant is composed of the fraction and an implicit leading digit. The exponent base

(2) is implicit and is not stored [4]. This standard specifies the basic types of representation like

 Half Precision (16-bits or 2-bytes)

 Single Precision (32-bits or 4-bytes)

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation

DOI: 10.9790/4200-0602015865 www.iosrjournals.org 59 | Page

 Double Precision (64-bits or 8-bytes)

TABLE 1 shows the Bit-wise distribution of Floating point number.

TABLE 1:- Floating Point Bit wise distribution
Types of Representation Sign Exponent Fraction

Half Precision 1[15] 5 [14-10] 10 [9-0]
Single Precision 1 [31] 8 [30-23] 23 [22-0]
Double Precision 1 [63] 11[62-52] 52 [51-0]

II.III Overview of Floating-Point Fused Multiply-Add (FMA) operation

In 1990, IBM introduced the floating-point fused multiply-add operation on the RISC System 6000 (IBM

RS/6000) chip [1]. IBM recognized that several advanced applications, specifically those with dot products

are routinely performed with a floating- point multiplication immediately followed by a floating-point

addition i.e. (A x B) + C, ad infinitum. To increase the performance of these applications, a new module was

created that merged a discrete floating-point multiplier and floating-point adder into a single hardware

block: the floating-point fused multiply-add (FMA) module. This floating-point arithmetic module executes

the equation (A x B) + C in a single instruction.

With the continued demand for 3D graphics, multimedia applications and new advanced processing

algorithms, IEEE has included the fused multiply-add operation into the IEEE 754-2008 standard [5].

Even though the fused multiply-add architecture has troublesome latencies, high power consumption and

performance degradation with single-instruction execution, more and more microprocessor designs implement

floating- point fused multiply-add module in their silicon.

II.IV Fast Fourier Transform (FFT) Algorithm

Fourier analysis is a family of mathematical techniques, based on decomposing signals into sinusoids.

The Discrete Fourier Transform (DFT) is used with digitized signals [13]. The DFT of a sequence of N

complex numbers is given by
1

2 /

0

, 0,1,.... 1
N

i N

n

n

Xk x e k N




   (1)

Fast Fourier Transform (FFT) is an efficient method for calculating the DFT. Even if it produces the same

result as the other approaches, it often reduces the computation time by a factor of ten or more for large sequences

[14].

There are two types of the FFT algorithm: Decimation in Time (DIT) where the time domain sequence is

split into even and odd parts for processing and Decimation in Frequency (DIF) where the frequency components

are divided into even and odd parts for processing. Both the DIT and DIF can accept inputs either in order or in bit

reversed order to produce bit reversed or in order outputs respectively.

Fig. 1 shows the radix-2 DIT FFT and DIF FFT butterflies, which are the basic computation element in

performing the FFT. Fig. 2 shows the data flow diagram for performing a radix-2 DIT FFT and Fig. 3 shows the

data flow diagram for performing a radix-2 DIF FFT.

The X0-X8 are the input data samples,
K

NW is the twiddle factor for butterflies which is given by equation:

2 / cos(2 /) sin(2 /)K i K N

NW e K N i K N     (2)

Figure 1: Radix -2 Butterfly Structure

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation

DOI: 10.9790/4200-0602015865 www.iosrjournals.org 60 | Page

Figure 2: 8-Point Radix -2 DIT FFT Using Butterfly Structure

Figure 3: 8-Point Radix -2 DIF FFT Using Butterfly Structure

III. Fused Floating Point Modules

This section describes three proposed Fused Floating Point Arithmetic (FFPA) modules i.e.

Fused Floating Point Add-Subtract (FFPAS) module, Fused Floating Point Multiply-Add (FFPMA)

module and Fused Floating Point Two-Term Dot-Product (FFP2TDP) module.

III. I Fused Floating Point Add-Subtract (FFPAS) Module

Discrete Floating-Point Adder (FPA) and Floating-Point Subtractor (FPS) can be designed using two

approaches as follows:

 Parallel implementation where two adders operate in parallel

 Serial implementation where a single adder is used twice with the same operands.

The architecture of the proposed fused floating point add-subtract (FFPAS) module is derived

from the floating-point add module. The exponent difference, significant shift and exponent adjustment

functions can be performed once with a single set of hardware with results shared by both add and the subtract

operations. Fig. 4 shows the flowchart of Proposed FFPAS module.

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation

DOI: 10.9790/4200-0602015865 www.iosrjournals.org 61 | Page

 X (31:0) Y (31:0)

Check floating point validity checker

 Align & selection of bigger and smaller number

 Proper addition algorithm with Proper subtraction algorithm with

 normalize and rounded result normalize and rounded result

Floating point adder result (31:0) Floating point subtract result (31:0)

 Figure 4: Flowchart of Proposed Fused floating point add-subtract module (FFPAS)

TABLE 2:- Testing Input for Proposed FFPAS module
Input 32 Bit Floating Point Equivalent Floating Point

Number

X 32'b0 0111_1000 1011_1010_0000_1111_0110_110 1.3490607e-2

Y 32'b0 0111_0011 0101_0000_0000_0011_1111_111 3.2044944e-4

 X + Y = (+1.3490607e-2)+(+3.2044944e-4)= +1.381105644e-2

 X – Y = (+1.3490607e-2)-(+3.2044944e-4)= +1.317015756e-2

TABLE 2 indicates the testing inputs for the proposed FFPAS module and the manual

calculations done for the inputs. Figure 5 shows the timing simulation of FFPAS module. From the timing

simulation of FFPAS module the output sum is (X + Y) = +1.3811056e-2 and difference is (X - Y) =

+1.3170158e-2, which are nearly same as that of manual calculation

Figure 5: Timing Simulation waveform of Proposed FFPAS module

III. II Fused Floating Point Multiply-Add (FFPMA) Module

The architecture of the proposed Fused Floating Point multiply-add (FFPMA) module is derived from the

floating-point add and multiplier module. The exponent difference, significant shift and exponent

adjustment functions can be performed once with a single set of hardware with results shared by both the

multiply and the add operations. Fig. 6 shows the flowchart of Proposed Fused Floating Point Multiply-Add

Module (FFPMA). TABLE 3 shows the testing input for proposed FFPMA module.

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation

DOI: 10.9790/4200-0602015865 www.iosrjournals.org 62 | Page

TABLE 3:- Testing Input for Proposed FFPMA module

Input

32 Bit Floating Point

Equivalent Floating

Point Number

X 32'b 0 0110_0000 1010_0000_1101_1110_0000_111 7.5827738e-10

Y 32'b 0 0111_0000 0101_1111_0000_0010_0000_101 4.1843410e-5

Z 32'b 0 0101_0001 0111_0001_0000_1010_0110_100 2.0485871e-14

X*Y = (+7.5827738e-10) * (+ 4.1843410e-5) = +3.172891131e-14

(X*Y) + Z = (+3.172891131e-14) + (+ 2.0485871e-14) = +5.221478231e-14

 X (31:0) Y (31:0) Z(31:0)

Check floating point validity checker

Multiplier algorithm Z(31:0)

Align & selection bigger and smaller number

 Proper addition algorithm with

normalize and rounded Result

Floating point multiply-adder result (31:0)

Figure 6 Flowchart of Proposed Fused floating multiply- add module (FFPMA)

Fig. 7 shows the timing simulation of proposed FFPMA module. Also the output (Mul-Add =

+5.2413355e-14) from the timing simulation and manual calculations are same.

Figure 7 Timing Simulation waveform of Proposed FFPMA module

III.III Fused Floating Point Two-Term Dot Product (FFP2TDP) Module

The architecture of the proposed fused Floating Point two term dot product (FFT2TDP) module is derived

from the floating-point add and multiplier module. Input A and input B multiply and input C and input D

multiply after adjusting result of multiplication. The exponent difference, significant shift and exponent

adjustment functions can be performed once with a single set of hardware with results shared by both the

multiply and the add operations. Figure 8 shows Flowchart of Fused Floating Point two-term Dot-Product

(FFP2TDP) module.

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation

DOI: 10.9790/4200-0602015865 www.iosrjournals.org 63 | Page

 Figure 8 Flowchart of Proposed Fused floating point Two-term Dot Product (FFP2TDP) module

TABLE 4:- Testing Input for Proposed FFP2TDP module
Input 32 Bit Floating Point Equivalent Floating

Point Number

in A 32'b0 0110_0000 1010_0000_1101_1110_0000_111; 7.5827738e-10
in B 32'b0 0111_0000 0101_1111_0000_0010_0000_101; 4.1843410e-5
in C 32'b0 0110_0111 1110_0000_0000_1010_0110_100; 1.1176817e-7
in D 32'b0 0110_0100 1111_0000_0000_0000_0000_000; 1.4435499e-8

inA * inB = (+7.5827738e-10) * (+4.1843410e-5) = +3.172891131e-14

inC * inD = (+1.1176817e-7) * (+1.4435499e-8) = +1.613429306e-15

(inA*inB) + (inC*inD) = (+3.172891131e-14) + (+1.613429306e-15) = +3.334234061e-14

 TABLE 4 shows the testing input for the proposed fused floating point 2 term dot product module.

Fig. 9 shows the timing simulation for the proposed fused floating point 2 term dot product module and the

calculation from the simulations is Two Term Dot Product = +3.3342340e-14 which appears to be

equal to the manual calculations.

Figure 9 Timing Simulation waveform of proposed FFP2TDP module

III.IV Analysis of Proposed Fused Modules

TABLE 5 shows the analysis of the proposed fused models in terms of area, delay, power and energy.

TABLE 5:- Analysis of proposed fused modules
Name of module LUT

(Area)

DSP4

8E

IOBS DELAY

(ns)

POWER

(mW)

ENERGY

(nJ)

ud_beh_str_add_sub 975 -- 131 29.02 719.94 20.89

ud_beh_str_mul_add 739 2 131 39.96 692.27 27.67

ud_beh_str_2term_dot_prod 926 4 163 39 715.68 27.91

IV. Proposed Fused Floating Point Radix 2 FFT Butterfly Structure
In this section the implementation of radix-2 FFT butterfly structure is discussed. This Radix 2

butterfly structure is designed by using Proposed fused floating point add-Subtractor (FFPAS), multiply-add

(FFPMA) and two-term dot-product (FFP2TDP) module as show in Fig 10. After analysis of Discrete

Implementation [13] and Proposed Fused implemented modules as shown in T able 6 it is observed that

discrete radix-2 butterfly structure require three Adders, three Subtractor and four Multiplier whereas

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation

DOI: 10.9790/4200-0602015865 www.iosrjournals.org 64 | Page

fused floating point radix-2 butterfly structure require only two Fused FP Add-Subtract and two Fused FP

Two-Term Dot Product module.

TABLE 6:- Comparison of Fused and discrete FP modules for radix-2 butterfly structure
Name of Module LUT

(Area)

DSP

48E

IOBs Delay

(ns)

Power

(mW)

Energy

(nJ)

Discrete Radix2

Butterfly Structure

4799 8 323 73.089 1138.37 83.20

Proposed Fused
Radix2 Butterfly

Structure

3499 8 323 60.594 1013.15 61.39

TABLE 6 shows the comparative analysis of proposed fused floating point radix-2 FFT butterfly

structure and the discrete implementation of radix-2 butterfly structure. From the table 6, it is clear that the

proposed fused FFT structure is efficient in terms of area, delay, power and energy required for processing the

signals.

Figure 10 Proposed Fused Floating Point implementation of Radix 2 FFT butterfly structure

V. Conclusion
The Prior art to realize floating-point DSP hardware falls into one of the two categories: a serial

approach used for applications with low area, power and energy budgets, while for applications that need to

achieve high speed processing, the parallel approach is used with large increase in the area and power

consumption. The proposed fused architectures have been specifically designed to address the problems of

high latency, area and power consumption for the floating- point implementation of DSP algorithms. The

implementation results using industry standard process and an automatic synthesis FPGA implementation

flow shows that the fused primitives are faster, smaller, uses less power and energy than discrete

implementation of Radix2 butterfly and provide more accurate result. In implementation of the proposed fused

modules, area required is reduced by 27.09%, delay is reduced by 17.10%, it consumes 11 % less power and

requires 26.22% less energy as compared to discrete implementation of Radix 2 butterfly structure.

References
[1]. E.E. Swartzlander, Jr. and H. H. Saleh, “FFT Implementation with Fused Floating-Point Operations,” IEEE Transactions

on Computers, , 61(2), 2012, 284-288.
[2]. JongwookSohn and Earl E. Swartzlander, Jr., “Improved Architectures for a Fused Floating- Point Add-Subtract Unit” IEEE

Transactions on circuits and systems-I, Vol. 59, no. Nov, 2012

[3]. H.Saleh and E.E. Swartzlander, Jr., “A Floating-Point Fused Add-Subtract Unit,” Proc. IEEE Midwest Symp. Circuits and
Systems (MWSCAS), pp. 519-522, Dec 2008.

[4]. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.

[5]. IEEE Standard for Floating-Point Arithmetic, ANSI/IEEE Standard 754-2008,Aug. 2008.
[6]. H.H. Saleh, “Fused Floating-Point Arithmetic for DSP,” PhD dissertation, Univ. of Texas, 2008.

[7]. Stuart Franklin Oberman, Design Issues in High Performance Floating Point Arithmetic Units, Ph. D. Dissertation, Stanford

University, 1996.
[8]. R.K.Montoye, E.Hokenek and S. L. Runyon, “Design of the IBM RISC System/6000 floating-point execution unit,”

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation

DOI: 10.9790/4200-0602015865 www.iosrjournals.org 65 | Page

IBM Journal of Research and Development, Vol. 34, pp. 59-70, 1990.

[9]. IEEE Standard for Verilog Hardware Description Language, IEEE 1364-1995.
[10]. IEEE Standard for Verilog Language, IEEE 1364-2001.

[11]. http://www.xilinx.com/FPGA_series[Online]

[12]. Lecture notes - Chapter 7 - Floating Point Arithmetic[Online] http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.flpt.html
[13]. The FFT Demystified, Engineering Productivity Tools Ltd., [Online]:

Available: http://www.engineeringproductivitytools.com/

[14]. IEEE 754 Standard - Binary Floating Point Number Calculator Convert a 32 Bit Word to Decimal Value [Online]
http://www.ajdesigner.com/fl_ieee_754_word/ieee_32_bit_word.php

http://www.xilinx.com/FPGA_series
http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/
le:%20http://www.engineeringproductivitytools.com/
http://www.ajdesigner.com/fl_ieee_754_word/ieee_32_bit_word.php
http://www.ajdesigner.com/fl_ieee_754_word/ieee_32_bit_word.php
http://www.ajdesigner.com/fl_ieee_754_word/ieee_32_bit_word.php

