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Abstract: Attacks on various computer networks are usually in form of patterns of attack. The patterns are 

recognizable mostly based on the data that the respective packet payloads contain. Attack patterns usually occur as 

strings or regular expression patterns, which are then converted into their equivalent automata. To create an efficient 

automata, there is a need for the automata design to consume less memory resources per each state of the automata. 

This is important whenever the design attempts to detect variations of these patterns. This paper explains the design, 

structure, and suitability of the hardware memory architecture for a Field Programmable Gate Array (FPGA) based 

automata design. The new design implementation is based on the input compression technique called Equivalence 

Classification (EC) which is used to drive a Nondeterministic Fine Automata (NFA) referred to as Equivalence Class 

Decoding NFA (ECD-NFA). The ECD-NFA approach creates classes of compressed inputs represented by 

positive integers simply called ECDs, which are the class descriptors. The compressed ECDs are then used to drive 

the automata, instead of unclassified raw character-inputs. This paper further extends the design by creating a 

memory grid that utilizes half the total number of required primitive block RAMs (BRAMS). Also, by re-writing the 

algorithm for the table look-up operation, the design utilizes a minimal number of function generators. Function 

generators are implemented as 6-input look-up tables (LUTs) on the target Xilinx FPGA Virtex-6 device. The 

efficiency of such LUT-based designs is determined by the throughput efficiency. The throughput efficiency (TE) is 

computed based on the ratio of LUTs utilized by the states of the automata and the design throughput. The 

preliminary results obtained for the TE is 3.55, while the clock rate obtained was 440.51MHz  
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I. Introduction 
Most network security systems usually rely on layers of protection and contain network monitoring and 

security software. However, as the demand for increased network bandwidths continues to increase, so have the 

frequency of network attacks and illegal accesses. As such, the consequences to the privacy and confidentiality of 

both network clients and confidential documents is severe. Attacks appearing in form of spam, bugs, Denial-of-

Service (DoS), and malicious software such as: viruses and worms etc. have a devastating effect on an entire 

network system [1]. To determine the patterns in which these attacks occur, pattern matching is required. Pattern 

matching can either be exact string matching or regular expression matching. Exact string matching belonging to 

a given packet payload can be performed during the process of deep packet inspection of the packet payload 

flowing into a given network. The problem with string matching is that it has become inadequate in coping with 

the current network security challenges. As such, regular expression pattern matching is favoured to deal with the 

problem attributed to string matching. 

Most current software tools such as Snort [2] use regular expressions or simply „regexps‟ for describing 

packet payload patterns that are streaming through the network. A regexp is a regular language constructed with 

character classes defined over a fixed alphabet. A regular language has three basic operations performed on its 

character classes [3] namely: concatenation (.), union (|) and Kleene closure (*). By properly arranging the three 

basic operators mentioned, more complex regexps can be constructed. Also, common operators such as: 

optionality (?) and quantified repetitions like ({a, },{, b} and {a, b}), could be constructed by using combinations 

of the three mentioned basic operators. The hardware exploited in this paper is the Field-programmable Gate 

Array (FPGA) [4], [6], [11], and [7].  

A number of FPGA-based automata implementations exist, which involve the conversion of regular 

expressions into their respective automata. In [3] it was observed that „any given pattern that can be matched by a 

regexp can also be matched by an automaton‟. As such, the preferred choice of automata in this paper is the 

Nondeterministic Finite Automata (NFA). An NFA processing time is capable of being reduced to O(1), but 

requiring O(n
2
) memory [8] on FPGAs. This is only possible by exploiting its fine-grained parallelism. 

Parallelism is considered to be a great advantage that FPGAs have over microprocessors when matching regexps. 

As a result, NFA-based approaches have gained popularity because of their ability to exploit the parallelism and 
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the re-configurable feature available in current FPGAs. The ECD-NFA design described in [5] and [9] classifies 

all input strings that have the same effect on the automata into classes. The ECDs that are generated are assigned 

in increasing order to represent the various respective vectors of next states on the transition table, before using 

them to drive the automata.  

However, the challenge has always been with how to reduce the overall input table size, which usually 

requires a lot of memory. The matching process of the ECD-NFA described in [5] and [9] utilizes primitive Block 

RAMs (BRAMs). The BRAMs are used for compressing the inputs from raw data inputs to the various 

equivalence classes as described in Algorithm 1. The equivalence classes are then mapped to their respective 

ECDs (class descriptors) accordingly. Each class of ECDs represents a set of vector of next states of the NFA. 

The BRAMs are later synthesized as a grid on a target Xilinx FPGA Virtex-6 device, during the pre-synthesis 

stage of the design hardware phase as shown in Figure 1. The contents of the BRAMs are then fetched and used 

to compare against the input strings that are streamed live into the ECD-NFA for a match to occur within the 

associated NFA engines.  

The problem with the current ECD-NFA design is that it utilizes double the number of BRAMs required, 

and that is not efficient. As such, we shall describe and evaluate the BRAM framework and the throughput 

efficiency of the ECD-NFA design, which is capable of improving the design. This is achieved by comparing the 

preliminary results to the other known NFA-based designs. The equations for the throughput and throughput 

efficiency as seen in Equations (1) and (2) are used to determine the efficiency of the related approaches. The 

ability to utilize minimal logic resources available on the target FPGA, while pursuing higher throughput is a 

great consideration. The main contribution of this paper is that by creating a memory grid structure, only half of 

the current memory requirement of the ECD-NFA will be required. Another contribution is that we were able to 

synthesize the table-look up operations into a small piece of logic, which utilizes minimal LUTs. 

The remainder of this paper is organised thus: A brief summary of related approaches is described in 

Section II. Section III describes the framework and algorithm for BRAM memory grid framework as shown in 

Figure 1. Section IV discusses the charts of the related designs under consideration based on the results as 

shown in Figure 4 and Figure 5, and Table 1. The preliminary results obtained for the various related designs 

are based on the use of the FPGA implementation tools particularly the Xilinx Synthesis Tool (XST) which is 

bundled with the Xilinx ISE Proprietary Project Navigator application version P.49d, vol. 14.4 (nt64) software 

package. The obtained results are then plotted and analysed in order to provide a quick and concise view of how 

each design performs in comparison to the others. Lastly Section V discusses the conclusion and ideas for future 

work. 
 

II. Related Works 
While implementing NFAs as logic, it was observed that if all the source input Flip-Flops (FFs) [10] to 

the destination input FFs are on –transitions (epsilon transition), then the FFs can be eliminated [8]. This 

means that epsilon transitions need not be implemented at all, thereby saving more memory logic circuits. The 

design described in [8] has pioneered several other approaches that consider building reconfigurable [11] 

FPGA-based designs. An FSM design was proposed in [12], which operates on a single byte wide data input, 

while providing a separate FSM for each byte wide data path from a multi-byte input data word. By combining 

the outputs from the separate FSMs in a given way, string matching is performed in parallel across multiple 

FSMs per clock cycle. Furthermore, [13] addressed the issue of memory by creating a packed array, having each 

entry containing the base address of the state vector in the packed array. The address is used for deciding the 

next states to be visited on the FSM, leading to some significant memory reduction.  

The design by [14] memorizes the path that the trigger signals based on specific constraints suitable for 

both exact string matching and complex regexp matching. The design by [15] used a wider input bus through an 

SRAM interface, which helped to increase the overall throughput of the regular expression matching (REM) 

block. A heuristic that automatically marshalled k-REMs with total N-states into p-pipelines was implemented 

by [3]. The process ensured that a function is called to compare every character class within each REM with 

those previously collected in the BRAM [7]. This happens whenever a REM is to be added to an existing 

pipeline. The matching outputs of each of the REMs are prioritized, with the higher priority given to the lower-

indexed pipelines and stages. The ECD-NFA described in [5] and [9] is constructed into blocks of MCMs, 

aimed at implementing a classification based approach that is only applicable and appropriate for NFAs. The 

design is then staged and pipelined in a simple corresponding formation, and utilizes only BRAMs and LUTs.  

 

III. The Memory Grid Framework 
The memory grid module described in this section is created from a primitive 36K BRAM to form a 

block of memory to be used by a single matching regular expression matching (REM) unit as shown in Figure 3. 

There are two primitive 36K BRAMs that are utilized, and by cleverly splitting each into half using a simple 

procedure, we obtained 2 x 18K BRAMs from each 36K BRAM. This made it a total of 4 x 18K BRAMs. The 4 
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x 18K BRAMs were then copied into a grid of 16 x 18K BRAMs thereby forming a virtual memory grid from 

only 4 x 18K BRAMs. By so doing, up to 4 characters can be matched at the same time by the ECD-NFA. This 

also translates to a faster matching process as against a single character matching process by a scale of 4:1. 

Algorithm 1 describes the process of supplying 32-bit input to each of the 4 x 18K BRAM blocks. The topmost 

bit of each of the 8-bit inputs is shed off, since the maximum number of expected ECDs is 128. This reduces the 

inputs to a mere 7-bits, which are then concatenated to form a 28-bit wide output from each 4 x 18K BRAM 

blocks. This memory grid arrangement makes it possible to match up to 4 characters at once. Furthermore, each 

block of 4 x 18K BRAM can now supply its 28-bit output to at least 4 table decoding blocks as shown in Figure 

1. This also means that up to 4 NFA matching units can be supplied with 128 ECDs each from the output of 

each decoding block. The REM block shown in Figure 1 represents one REM matching block  

 

 
Figure 1: A Memory Grid BRAM Structure [9]. 

__________________________________________________________________________________________ 

  Algorithm 1: Construction of an n x n BRAM grid [9]. 

__________________________________________________________________________________ 
INPUT: 32-bit input. 

OUTPUT: A <28 bit output from each REM as shown in Figure 3. 

BEGIN 

i. Read and parse the regexps to be constructed into the equivalent ECD-NFAs and ECDs. 

ii. Assign to each classified inputs created in (i) class descriptors (ECDs). The ECD represents the sets of 

vectors of next states generated during the computation process for all character classes that trigger 

transitions from a state si to a state sj, where  <n,   <n. 

iii. Repeat steps (ii) for  vectors of next states si,j   < n, j < n, and store all the sets of vectors of next state in 

a list of vectors for  states si in the ECD-NFA. Compress each raw character input to be streamed by 

mapping them to their respective ECDs in the BRAM. 

iv. Finally, exit the process and generate the VHSIC Hardware Description Language (VHDL) code 

representation of both the 1-byte table of ECDs and the generated ECD-NFA automata. Then automatically 

upload to the Xilinx FPGA Virtex-6 device for synthesis and implementation. 

END. 
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A. Synthesizing transition table into LUTs 
Once the 4 x 7-bit ECDs are supplied from the 2x36kBRAM (each block of 4 x 18K BRAM) the table 

synthesis module labelled as 4 x Tc in Figure 3 starts processing. The 4 x 7-bit ECDs are first concatenated into a 

28-bit output before it is supplied to the 4 x Tc module. The process then synthesizes the table into a minimal 

number of LUTs, making it perform table lookup operations faster as described in Algorithm 2. The output of the 

process is a < 128-bit vector of matching ECDs that are ready to be supplied to the 4 x 7 ECD-NFA automata for 

matching to take place. Moreover, each of the bit positions in the < 128-bit vector output represents the 

compressed form of an ECD value. The use of the bit vectors has greatly reduced memory and computation time 

particularly if it is to be compared to an 8-bit character input representation. The ability to utilize 6-input LUTs 

for the table look up operation and the compression of the ECDs into bit vectors is a major contribution in this 

paper.  

___________________________________________________________________________________________ 

  Algorithm 2: Hardware Synthesis Process for the compressed n-byte ECDs [9]. 

__________________________________________________________________________________ 

INPUT: An k x k table of n-byte ECD input class descriptors and a 28-bit input from the 4 x 18K BRAM block 

as shown in Figure 1. 

OUTPUT: A <128-bit vector of compressed ECDs. 

BEGIN 

i. Read the 28-bit inputs from the 2 x 36kBRAM and the k x k tables of n-byte ECDs. 

ii. Create the relevant 2-dimensional arrays converted into signal variables and initialize the same to contain 

the associated 1-byte tables of compressed ECDs. 

iii. Compute and process the sub-linear table-look up operations, to generate the relevant < 128-bit vector of 

outputs. Each bit position of the output bit vector represents an equivalent ECD value.   

iv. Initialize the tables of 1-byte for the compressed ECDs. Assign the 1-bit value of ‘1’ to the output variable. 

END. 

 

A sample table of ECDs generated from the regexp “/(a|b)*(cd)/” is as shown in Figure 2 as described 

by [5] and [9]. The various column vectors of next states represent transitions from a given current state to all 

the various next states to which a given class of ECDs have the same effect on the automata. The top rows of 

Figure 2 are the various classes of inputs used to represent the sets of vectors of next states on the ECD-NFA, 

while the columns are the vectors of next states transited to from each given current state to the various next 

states. Figure 2 shows the various sets of vectors of next states that are transited to for each current state 0-4. 

The classes of inputs have designated ECDs associated to each one. A description of how the process works has 

been fully discussed in [5]. 

 
Figure 2: Table of ECDs [5] and [9]. 

 

 
Figure 3: Block diagram of four 1-byte input ECD-NFA REM matching unit [9]. 
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B. Evaluation 
The ECD-NFA design was evaluated using the Xilinx Vixtex-6 architecture. The design required only 

O(n) storage space for the ECDs and O(n) time to process each of the ECDs. The ECD-NFA takes O(nm) time 

to search through a text of length m. A data bus width of 8-bits was used to compute the throughput measured in 

Gigabits per second (Gbps). Afterwards, the ratio for the look-up tables (LUTs) utilized by states of each ECD-

NFA automata was recorded. Lastly, the clock rate, and throughput, together with the computed LUTs per state 

ratio was used to compute the throughput efficiency [3] as seen in Table 1.  Having a design that obtains high 

throughput while incurring minimal logic resource cost has always been a trade-off and challenge with such 

REM-based designs. The Equation (1) and (2) are used to compute the throughput and throughput efficiency. 

Throughput = clock rate *data bus width          (1) 

 

Throughput  = Throughput * No. of states           (2) 

efficiency No. of LUTs 

 

Table 1: Table of Results [3] and [5]. 

 

 

 

 

 

 

IV. Discussion 

The discussion dwells on how the various designs compare against each other.  Figure 4 and Figure 5 

give a pictorial view of the results shown in Table 1.  

 

A.  Chart  
The value of the ECD-NFA‟s LUTs/state ratio is about 43% lower than the next lowest reported ratio [16] as 

seen in Figure 4. The throughput efficiency reported against our ECD-NFA design is about 60% higher than the 

next highest reported throughput efficiency as seen in Figure 5. This is still work in progress, but there is hope 

that the optimised version that is currently being developed will bring much improvement to the current design‟s 

clock rate and throughput.  

 

 
Figure 4: The Number of LUTs consumed by the States of the Compound NFA. 

Design Clock  Rate Throughput LUTs/State Throughput Efficiency 

Non-ECD-NFA 290.12 2.27 2.10 1.08 

ECD-NFA 440.51 3.44 0.97 3.55 

Bispo et al. [16] 362.50 2.9 1.28 2.3 

Clark and Schimmel [4] 250.00 2.00 1.70 1.2 

Mitra, Najjar and Bhuyan  [15] 100.78 0.8 2.3 0.35 
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Figure 5: Throughput Efficiency. 

 

V. Conclusion And Future Work 
The memory grid framework developed in the ECD-NFA automata holds some promise. Although it is 

still early to determine, but there is the likelihood that the grid framework will prove useful when considering 

the construction a parallel multi-character and multi-pattern approach. The approach will serve as the optimized 

version of the existing ECD-NFA which at the moment is still not very efficient. The lack of efficiency is 

attributed largely to the large number of LUTs, 128-bit wide shift registers, multiplexers, FFs and other logic 

circuits that the design utilizes.  We are optimistic that the time it takes to synthesize, and PAR the design will 

be greatly reduced when the optimized ECD-NFA design is fully developed. The new design will be much 

bigger and capable carrying out scalable parallel multiple-character and multiple-pattern matching of ECDs. We 

are optimistic that the proposed optimized design will increase the margin of the current ECD-NFA design 

throughput and throughput efficiency by a scale of 4:1.  
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