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Abstract: Activation functions are used to transform the mixed inputs into their corresponding output 

counterparts. Commonly, activation functions are used as transfer functions in engineering and research. 

Artificial neural networks (ANN) are the preferred choice for most studies and comparisons of activation 

functions. The Sigmoid Activation Function is the most common and its popularity arise from the fact that it is 

easy to derive, its boundedness within the unit interval, and it has mathematical properties that work well with 

the approximation theory. On the other hand, not so common is the Fibonacci Activation Function with similar 

and perhaps better features than the Sigmoid. Algorithms have a broad range of applications making it 

plausible to suspect that different problems call for unique activation functions. The aim of this paper is to have 

a detailed of the role of  the activation functions and then analyse the performance of two of them – the Sigmoid 

and the Fibonacci – in a non-ANN setup using the most basic artificially generated signals. Results show that 

the Fibonacci activation function performs better with the set of signals applied in the natural gradient 

algorithm.  

Keywords: Fibonacci Activation Function, Sigmoid Activation Function, Independent Component Analysis, 

Natural Gradient Algorithm.  

 

I. Introduction 
The use of adaptive algorithms to solve various problems is predominant because they can adapt their 

behaviour to reflect the changing characteristics of the modelled system.  Karlik and Olgac observe that there 

has been enormous research to investigate methods aimed at improving the performance of ANN through 

optimised training methods, network structure and learn parameters with little work dedicated to activation 

functions [1]. Adaptive algorithms that do not use the ANN in their implementation have also received little 

attention. On activation functions, the sigmoid is seen as the preferred choice because it attains the 

approximation power much better when compared to other established functions studied in the approximation 

theory of polynomials and spines [2]. In some advanced studies, the use of the hyperbolic tangent sigmoid in the 

first and second layers and a linear function in the output layers of an ANN network are the most effective when 

used within the decision algorithm for transmission system fault detection [3]. Despite the likely use of 

Fibonacci Activation Function, there is no real application of it in literature other than in [4] and only on the 

experimental basis. Fibonacci activation function has also been picked up in [5] and used in the separation of 

two speech signals with promising results. A significant observation is that most of the studies on activations 

functions use neural networks. Therefore, a comparison of the Fibonacci activation function (FAF) to the widely 

preferred alternative, the Sigmoid activation function (SAF), is necessary.  A general understanding of 

activation functions and why they are critical in the algorithm is not well expounded in literature. What is the 

performance of FAF when compared to SAF for separating artificially generated signals in terms of quality and 

stability? 

 

II. Role Of Activation Functions 
Input signals are often non-linear in nature. However, during the mixing process, such inputs are combined 

linearly. In fact, inputs to algorithms are simply a linear transformation. 

𝒙 =  𝑨𝒔                                                                  (1) 
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where 𝒙 is a vector of mixed signals, 𝑨 is the mixing matrix and 𝒔 is the vector of the input signals. To 

retain back the original signals s, a reverse transformation through a de-mixing matrix 𝑾 is necessary but often 

not sufficient.  

 𝒚 =  𝑾𝒙                                                           (2) 

The linear transformation in Equation 2 is necessary but will need to be passed through an activation 

function even if the inputs are linear.  Because most inputs are non-linear, 𝒚 can  effectively resemble 𝒔 if the 

transformation passes through a non-linear activation function. Otherwise, it is not possible to retain the non-

linearity of the input signals. Non-linearity here means that it is not possible to reproduce the output when the 

inputs are combined linearly. 

While the input takes values in the range [-∞,∞], the output controlled by the activation function gives 

bounded values within the intervals [1, 0] or [-1, 1]. Without an activation function, it is not possible to map the 

wide inputs to relatively small output parameters.  

One essential characteristic of an activation function is that it must be differentiable within its bounded 

interval. Differentiation helps to give the direction of adjusting the weights. When the derivative value is 

significant, it means the corresponding weights will equally have large weight adjustments. Calculus rules are 

that a significant derivative value indicates the minima is still far. For each iteration, the weights of the 

algorithm are adjusted to correspond to the direction of the steepest descent on the surface of the cost function 

defined by the total error. Computing the error is by subtracting the expected from the observed values. Then 

each weight within the matrices of weights is adjusted according to the gradient error calculated. In a more 

general sense, the derivation is done along the activation function curve as the expected value using 

optimization techniques such as the natural gradient in finding the minima of the objective function. 

The first derivative determines the first point on the curve by ensuring that there is a tangent with a 

slope of zero on the line tangent. A slope of zero suggests the location of the minima and it can be local or 

global for the function. However, the first derivative also suggests something significant: it informs the 

algorithm if headed in the correct direction that will take it to the minimum of the function. The derivative 

value, that is, the slope at that point decreases gradually. What this means is that for a minimized function, its 

derivative must be calculated and that the value must be decreasing if the algorithm is following the correct 

direction. It is for this reason that the activation function must be differentiable within its range, revealing it 

critical role in algorithms. The better the choice of the activation functions the better the algorithm.  

 

2.1.  Comparison of Activation Functions 

This paper compares the commonly used activation function the Sigmoid to the less explored in the 

literature, the Fibonacci. [4] showed that the Fibonacci activation function outperforms another (name not 

known) but having the equation: 

𝜑 𝑦 =  
2

3
𝑦3 +

1

3
𝑦5                                                                    (3) 

In fact, the SAF is so common that there is an ANN named after it, the Sigmoid Neurones. Sigmoid 

neurones are modified version of the perceptions where small changes in the bias and weights reflect as small 

variations in the output [6]. Equation 4 shows the FAF 

𝜑 𝑦 =  
 5−1

2
𝑦3 +

3− 5

2
𝑦5                                                        (4) 

while the SAF has the equation 

𝜑 𝑦 =  
1

1+ 𝑒−𝑦                                                                            (5) 

and their MATLAB generated graphs are shown in Figure 1, below. 

 
Figure 1: Sigmoid and Fibonacci Activation Functions 
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An activation function is the cumulative density function (cdf) and the reason for its use is explained 

below. Assuming there is a random variable s, having probability density 𝑃𝑠(𝑆). The cumulative density 

function (cdf) is given as: 

𝐹 𝑠 =  𝑃(𝑆 ≤ 𝑠)                                                             (6) 

Suppose, this is the Gaussian density then 

 
Figure 2: Density function (a) and its cdf (b) 

 

The height of the function 𝑠 (Figure 2 (b)) is equal to the area of the Gaussian density (Figure 2 (a)), up 

to the period 𝑠. Going further (Figure 2 (b)) the function (Figure 2 (a)) becomes Gaussian. Equation 7 is another 

form of writing the cdf of Equation 6. 

𝐹 𝑆 =  𝑃𝑠

𝑠

−∞

 𝑡 𝑑𝑡                                                                       (7) 

 

Suppose there is a random variable 𝑠 and the aim is to model the distribution of this variable. Two 

option exist: the first option is by specifying the density 𝑃𝑠(s) or the second option is to specify the cdf 𝐹 𝑆 . 

Equation 7 is used to relate the two options. Most literature prefers the cdf option because of the easy in the 

calculation and because it is continuous over the specified space. Continuous here means it is differentiable over 

its range. In signal processing and other applications, the cdf is truly referred to as the activation function.  It is, 

therefore, easy to recovery the density 𝑃𝑠(s) by taking the cdf and computing its derivative 

𝑃𝑠 𝑆 =  𝐹′(𝑆)                                                                        (8) 

 

There is always a step in algorithms when the random variable for 𝑠 is assumed by either specifying the 

density 𝑃𝑠  or the cdf. In the real sense, the assumptions involve the choice of an activation function that can 

model the output of the signals to be separated. The cdf or the activation function has to be some function 

increasing from 0 to 1 or some other specified range.   

 

III. Generalized Independent Component Analysis 
Let us assume that the data comes from 𝑛 original sources as speakers  

𝑠 ∈  ℝ𝑛                                                                                        (9) 

where 𝑠𝑗
(𝑖)

= 𝑠𝑖𝑔𝑛𝑎𝑙 𝑓𝑟𝑜𝑚 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖 

we observe 

𝑥(𝑖) = 𝐴𝑠(𝑖)                                                                        (10) 

where 𝑋 ∈  ℝ𝑛 . This means that there are n microphones and each of them records some linear combination of 

what the speaker says: 

𝑥𝑗
(𝑖)

=   𝐴𝑗𝑘 𝑠𝑘
(𝑖)

                                                                    (11)

𝑘

 

Equation 11 can be interpreted to mean the jth microphone is recording a linear combination of all the speakers 

are saying at time i. The goal is to find the matrix 𝑊 = 𝐴−1 so that 

𝑠(𝑖) = 𝑊𝑥(𝑖)                                                                    (12) 

It is possible to recover the original sources as a linear combination of 𝑊𝑥(𝑖).  

The use of ICA is because 𝑠𝑗
(𝑖)

 ∽ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 [−1, 1], each of the speaker outputs uniform white noise 
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Figure 3: Original source signals 𝑠1and 𝑠2 

 

Figure 3 is part of the 𝑠1and 𝑠2, the original sources and is what the two speakers will be outputting 

because each of the speakers is giving out uniform [-1, 1] independent random variables.  The microphone, 

however, records 

 
Figure 4: Microphone observed signals 

 

From Figure 4, it is easy to tell the axis of this parallelogram and it is also easy to note which linear 

transformation is responsible for transforming Figure 4 to Figure 3. 

There are ambiguities in ICA. One of them is that it is not possible to recover the original indexing of 

the order. In particular, the generated data from speaker-1 and speaker-2 when running on ICA there is the 

possibility of ending up with the reversed order of speakers. That corresponds to taking Figure 4 and flipping it 

along the 450 axis. The axis reflects the picture in either way and it will still be within the box.  There is no way 

an algorithm can tell which was speaker-1 and which was speaker-2. The ordering is ambiguous. The other 

source of ambiguity is the sign of the sources. It is not possible to tell whether you got back positive 𝑠1
(𝑖)

 or 

whether you got back negative 𝑠1
(𝑖)

. In Figure 4, what that corresponds to is depicted by taking the figure and 

reflecting it along the vertical axis, it will reflect along the horizontal axis and you will still get the box. So, it 

turns out that in this example, there is a guarantee of recovering positive 𝑠𝑖  or negative 𝑠𝑖 .  The two are, 

therefore, the only ambiguities in this case – permutation of the speakers and the sign of the speakers.  It turns 

out that the reason these are the only source of ambiguity was that 𝑠𝑗
(𝑖)

 is non-Gaussian, an essential 

characteristic for ICA to work.  

 
Figure 5: Gaussian Signals 
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Suppose the original sources were Gaussian (Figure 5), then 𝑠(𝑖) ∽ 𝒩(0, 𝐼)  - Non-Gaussian. Gaussian 

is a spherically symmetric distribution. Figure 5 shows the continuous of a Gaussian distribution with identity 

covariance. If the data is Gaussian, then it is impossible to use ICA.  

Mathematically, let 𝑠 ∈  ℝ𝑛  and the probability density function of 𝑠 =  𝑃𝑠(𝑠). Therefore, 𝑋 =  𝐴𝑆 = 

𝑊−1𝑠 and where 𝑠 =  𝑊𝑥 . Will this information at hand, next is to find the probability density function of W, 

that is, 𝑃𝑥 𝑋 . It is easy to substitute the above equations and get 

𝑃𝑥 𝑋 =  𝑃𝑠(𝑊𝑥)                                                           (13) 

Equation 13 is only possible for most functions but not for continuous density function. For continuous density 

function, the right formula is  

𝑃𝑥 𝑋 =  𝑃𝑠(𝑊𝑥)|𝑤|                                                      (14) 

where the additional |𝑤| on Equation 14 is the determinant of the matrix 𝑤. (Shortly we will see this 

determinant in use in the NGA in an applied sense, given as  𝑑𝑒𝑡𝑊 ). As an example to illustrate this, suppose 

𝑃𝑠 𝑠 = 𝐼 0 ≤ 𝑠 ≤ 1                                                      (15) 

showing that the density of s is uniform distribution over [0, 1].  Figure 6 illustrates this distribution. 

 
Figure 6: Density distribution of 𝑠 over [0, 1] interval 

 

If 𝑠 is uniform over [0, 1], then x will be the uniform distribution over [0, 2], because 𝑥 =  2𝑠, therefore, 

𝐴  =  2 and 𝑤 =  
1

2
. For 𝑥, the density would be  

 
Figure 7: Density distribution of 𝑥 over [0, 2] interval 

 

In this case 𝑃𝑥 𝑥 = 𝐼 0 ≤ 𝑥 ≤ 2 .
1

2
 .  where 𝐼 denote the indicator.  

 

IV. Natural Gradient Model Architecture 
The natural gradient algorithm (NGA) is an improvement on the shortcoming of the stochastic gradient 

algorithm (SGA), which demands the specifying of the initial condition. In both SGA and the modified NGA, 

the aim is to adjust the coefficient of the demixing matrix. Adjusting 𝑊(𝑘) means that the joint Probability 

Density Function (jPDF) of the separated signal 𝑦(𝑘) is made as close as possible to the assumed distribution 

𝑝 𝑦(𝑦) [7] in each iteration of the algorithm. The measure has been successfully done by Cardoso using the 

divergence measure of Kullback-Leibler [17]. 

𝐾𝐿(𝑝𝑦 ∥ 𝑝 𝑦) =  𝑝𝑦 𝑦 log⁡ 
𝑝𝑦 (𝑦)

𝑝 𝑦 (𝑦)
 dy                                              (16) 

where 𝑝𝑦(𝑦) is the actual distribution and 𝑝 𝑦(𝑦) is the assumed distribution of the estimated signal 

vector. In an ideal situation 𝑝𝑦 =  𝑝 𝑦  giving a 𝐾𝐿 of zero. In fact, Equation 16 can correctly be referred to as the 

objective function [5]. 

The tricky part is in choosing 𝑝 𝑦(𝑦), which makes Equation (16) unreliable in many applications. A 

cost function that is instantaneous and which has the same expected value as that of the 𝐾𝐿(𝑝𝑦 ∥ 𝑝 𝑦) is given by 

𝐽  𝑊 = −𝑙𝑜𝑔   𝑝𝑠 𝑦𝑖(𝑘) 

𝑚

𝑖=1

 𝑑𝑒𝑡𝑊                                           (17) 

where 𝑑𝑒𝑡𝑊 indicates the determinant 𝑊. The cost function (Equation 17) can be computed further to yield the 

stochastic gradient descent given as  

𝑊 𝑘 + 1 =  𝑊 𝑘 +  𝜇(𝑘) 𝑊−𝑇 𝑘 − 𝜑(𝑦(𝑘)𝑥𝑇(𝑘))                                 (18) 

 

here 𝜑 𝑦 =  𝜑 𝑦1 , … , 𝜑(𝑦𝑚 ) 𝑇  ,  𝜑 𝑦 =  −𝛿𝑙𝑜𝑔𝑝𝑠(𝑦/𝑑𝑦), is the cdf or algorithmically the 

activation function. 𝜇(𝑘) is the step size used by the algorithm to move from one iteration to the next. 

According to [7], Equation (18) is able to perform Blind Signal Processing (BSS) for any simple choice of 𝜑(𝑦). 

The Stochastic gradient descent of Equation (18) is limited regarding application because of its slow 
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convergence. A modification to the stochastic gradient descent to remove the mixing matrix 𝐴’s ill-condition is 

the natural gradient algorithm by Amari [18] or the relative gradient by Gardoso [17].  In NGA, the initial 

condition is not put into consideration because the algorithm aims at the overall system matrix 𝐶(𝑘). The full 

derivation of the NGA is found in [7] with its final equation given as:  

𝐶 𝑘 + 1 = 𝐶 𝑘 +  𝜇 𝑘  𝐼 − 𝜑(𝐶(𝑘)𝑠(𝑘))𝑠𝑇(𝑘)𝐶𝑇(𝑘) 𝐶 𝑘                          (19) 

 

From Equation 19 it is evident that the mixing matrix 𝐴 does not play any role in the separation process 

as it only used in the initial condition 𝐶(0)  =  𝑊(0)𝐴. Therefore even if the mixing matrix is poorly chosen, it 

will not affect the quality of separated signal. The NGA works even better if the inputs 𝑠(𝑘) adhere to the ICA’s 

independence requirement. Despite the modifications, both SGA and NGA require a good choice of the 

activation function 𝜑(. ) as shown in Equation 19.  

 

V. Experiment 
Four sub-Gaussian signals were used as inputs to the algorithm 

 

𝑠1 𝑡 = 𝑠𝑎𝑤𝑡𝑕 𝑜𝑜𝑡𝑕 (𝑡)

𝑠2 𝑡 = 𝑠𝑞𝑢𝑎𝑟𝑒 𝑡        
𝑠3(𝑡) = sin⁡(𝑡)

𝑠4(𝑡) = cos⁡(𝑡)
              

 
 

 
                                                                     (20) 

The four inputs have a duration of 100 seconds with a sample time of 0.01. The MATLAB waveforms of these 

signals is shown below. 

 

 
Figure 8: From top to bottom – sawthooth, square, sine and cosine signals 

 

The inputs are then mixed together using a 4-by-4 mixing matrix generated randomly in the range [-1,+1]. The 

output of this mixture is shown below 

 

 
Figure 9: Mixed input signals 

 

The NGA algorithm is now applied to the mixture of Figure 9 with the Fibonacci and later Sigmoid activation 

function in turns. The learning rate is set at 𝝁 = 𝟎. 𝟎𝟎𝟏 while the initial demixing matrix is set at 𝑾𝒐 = 𝟎. 𝟏𝑰. 
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VI. Performance Comparison 
The outputs from the two activation functions are shown below 

 
Figure 10: Separated Signals using FAF 

 

 
Figure 11: Separated Signals using SAF 

 

It is evident from the two outputs of Figures 10 and 11 that the FAF realizes much better results than 

the SAF. Further tests on the convergence and stability of the algorithm using FAF and SAF were done with 

results shown in Figure 12. 

 

 
Figure 12: Convergence rate of FAF and SAF 

 

At 10000 iterations it is clear that the algorithm converges much faster when FAF is employed than 

SAS. It also indicates that the stability of the algorithm is much higher when FAF is used as opposed to SAF 

and shown by the few elements required to reach convergence.  

Finally, a test on dynamic error was also done. 
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Figure 13: Dynamic error 

 

It is clear that the dynamic error when the input are compared to their corresponding output signals reveal that 

when FAF is used it gives a smaller error when compared to SAF. 

 

VII. Conclusion 
The findings reveal that the performance of algorithms is significantly affected by the choice of the 

activation function. With a focus on activation function research; there are possibilities of algorithms performing 

better on problems that have long been identified with specific AF.  For example, despite the overwhelming use 

of the Sigmoid in research and engineering applications, this study has shown that Fibonacci is an equally 

promising AF. Specifically, the findings show that FAF, when used in NGA, makes the algorithm more stable 

and converges much faster than when SAF is used.  FAF also realizes a better error than SAF. 
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