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I.  Introduction To Tina Capabilites For Mos Device Simulation — Dc Analysis

The purpose of the current article is to present an introduction to the concepts of CMQOS circuit design
[1,2] using the TINA-pro software [3]. It is based on designing basic digital-gates topologies. This work follows
previous publications related to the educational presentation of VLSI design concepts and techniques [4-8]. The
topics that will be studied here are specifically related to setting-up nmos and pmos device models using BSIM3
parameters [9] for corresponding circuit simulations of basic digital gates. Devices such as nmos and pmos in a
circuit-design, are just symbols, carrying information about the electrical properties of actual devices in terms of
systems of equations. The symbols of nmos and pmos are the visual representation of a SPICE description of
each device.

TINA software has a dialog window for setting mos-device parameters (models: Symbolic, Schichman
— Hodges, SPICE Level 1, 2, 3, S Level-3 (3F5), and BSIM3). Also (and this is the selection in the current
article) permits the user to introduce SPICE model decks with technology parameters, as shown in Fig. 1 and
Fig. 2. In the current article 0.25 CMOS technology parameters are used.
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Fig. 1. (a). Setting nMOS and pMOS for DC-Analysis. (b). Contents and parameters tab allow the application of
changes in the technology model parameters and on the geometrical characteristics respectively.

Figure 1(a) shows the schematic setup for DC analysis of an nmos and a pmos transistor. The use of
jumpers (the “TAY” shapes) is utilized in this and all subsequent schematics, in order to present clear designs by
using limited number of wires connecting various circuit nodes. Two jumpers with the same name correspond to
a wire connecting the specified nodes upon which are placed. Figure 1(b) shows an example of the dialog
window popping up with double-clicking on the nmos symbol. Pressing “Enter Macro”, a netlist is opened as
seen in Fig.2(a). This is the SPICE description of the nmos using BSIM3 modeling equations and 0.25um
technology parameters. Figure 2(b) shows the corresponding SPICE file for the pmos. As seen in these SPICE
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descriptions, the BSIM3 model is invoked in TINA using the LEVEL=7 directive. The command PARAMS:
W=10u L=0.25 is made accessible though the SubCkt-Parameters in Fig. 1(b), where the user can change the
value of the width and length of the device, without having each time opening, changing and saving the netlist.
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Fig. 2. BSIM3 0.25um parameters for (a) nMOS and (b) pMOS

In order to simulate the Current-Voltage (IV) characteristics of the two devices, a DC analysis has to be
set. Figure 3(a) shows the setup for obtaining the current vs. Vps and Fig. 2(b), the setup for obtaining the
current vs. Vgs. Figure 3(c) shows the corresponding current vs. Vps plot for the nmos (idn) and the pmos (idp)
transistor in log-lin scale. Figure 3(d) shows the corresponding current vs. Vgs plot for the nmos (idn) and the
pmos (idp). The use of current-arrow symbols idn and idp in the circuit design (shown in Fig. 1(a)) instruct
TINA preprocessor to calculate the source-drain current for each voltage-value during DC analysis, resulting in
the data seen in Fig. 3.
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Fig. 3. (a). Setting | vs. Vps DC analysis. (b). Setting I vs. Vgs DC analysis. (c). | vs. Vps. (d). I vs. Vgs.
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Il.  The Mos As A Switch — Transient Analysis

Having set up and performed the DC analysis of single nmos and pmos devices, the next step is to
check their switching properties. Figure 5(a) presents the circuit schematic setup for studying the ability of the
devices for reliable capacitor charge and discharge. The capacitor used in each case is either fully discharged or
completely charged. Figure 4(a) shows the capacitor’s settings-dialog-window, with Initial-DC-Voltage = 0V,
and Fig. 4(b) shows the same dialog-window for Initial-DC-Voltage = 2.5V. The initial-capacitor-voltage
settings are used in the simulation setup shown in Fig. 5(a). Figure 6 shows the transient analysis window
dialog. Note that the “Use initial conditions” setting is selected to take into account the initial DC voltage of the
capacitors.

The tests on Fig. 5(a) are as follows: First nmos attempts to charge a discharged capacitor to the Vpp.
This nmos has Vpp on input and Vpp on source (Fig. 5(a)-circuit-(a)). Next, an nmos discharges a fully charged
capacitor to ground. This nmos has Vpp on gate and ground on source (Fig. 5(a)-circuit-(b)). Then, a pmos
charges a capacitor to Vpp. This pmos has ground on gate and Vpp on drain (Fig. 5(a)-circuit-(c)). Finally, a
pmos discharges a fully charged capacitor to ground. This pmos has ground on gate and ground on drain (Fig.
5(a)-circuit-(d)).

Figure 5(b) shows the results from the transient analysis. Specifically, the capacitor voltages
(Vout_n:1, Vout_n:2, Vout_p:3, Vout_p:4). Take into consideration that nmos and pmos conduct when gate
voltage is greater than the threshold V, and less than V, respectively. What is seen in the graph are well known
facts in CMOS literature [1,2]: (a) the nmos gives a poor “1” i.e., it cannot charge the capacitor up to Vpp
voltage but only up to Vpp-Vy,. (b) the nmos gives a good “0” i.e., it can discharge the capacitor down to 0 volts.
(c) The pmos gives a good “1” i.e., it can charge the capacitor to Vpp volts. (d) The pmos gives a poor “0” i.e., it
cannot discharge the charged capacitor down to 0 voltage, but only down in to [Vy|.
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Fig. 4. (a) Capacitor with OV initial DC voltage. (b) Capacitor with 2.5V initial DC voltage.
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Fig. 5. (a). Circuit for checking the switching properties of nMOS and pMOS. (b). Timing analysis results.

Another transient analysis with digital input sources is seen next. Figure 7(a) shows the circuit
schematic setup. Vgs is a 500kHz clock and Vpp is a 1IMHz clock. Figure 7(b) shows the currents vs. time.
Observe the duality in nmos and pmos function. Also observe that the nmos current (idn) is almost twice
compared to a pmos’ with the same W/L ratio (idp_w10u). This is due to nmos’ approximately twice carrier
mobility. To compensate, the W of pmos is set to twice that of nmos’ and the resulting current (idp_w20u) is
approximately equal to idn. This analysis also presents the practical quality of TINA to perform mixed
simulations of digital sources and analog device models on the same circuit schematic.
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Fig. 7. (a) Circuit of timing analysis using digital signal source for nmos and pmos with the same width and
pmos with double width for comparison. (b) Transient analysis results.

I11. 2 Transistor Gates. Inverter And Transmission Gate

The simplest CMOS gate is the inverter and the transmission gate. Both consist of an nmos and a pmos.
Their structure is based on using the more reliable of the two devices, depending on the input conditions. For
example Fig.8(a) shows a CMOS inverter circuit topology and Fig. 8(b) the corresponding voltage transfer
characteristic, showing that the commutation point of the inverter is approximately at 1.2V of input voltage in
this case. Figure 9(a) shows the setup circuit for the timing analysis seen in Fig. 9(b), where it is verified the
inverting behavior of this gate. The topology of the inverter is such that when the input is “1”, only the nmos
device is “on”, connecting the output to ground, and when the input is “0”, only the pmos device is “on”,
connecting the output to the supply. In each case the strong “0” and the strong “1” is achieved, based on what is
discussed in the previous section.
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Fig. 8. (a). CMOS inverter circuit. (b) Voltage transfer characteristic.

The other simple two-transistor gate is the transmission gate, shown in Figure 10(a). In the first circuit
the objective is to observe the capacitance charging, while on the second circuit setup, the objective is to
observe the corresponding capacitor discharging. Figure 10(b), shows that in both cases the transmission gate
delivers a “good” result, either “1” or “0”. Figure 11(a) shows the circuit setup for transient analysis simulation
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of the transmission gate. The design is all CMOS based. Figure 11(b) verifies that the transfer of input D to the
output Out is achieved under synchronous En=1 and Ep=0 signals, when both nmos and pmos are on.
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Fig. 9. (a) CMOS inverter circuit setup for digital timing analysis. (b). In/Out timing analysis.
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Fig. 10. (a). Transmission gate setup for charging and discharging. (b). Timing analysis results.
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Fig. 11. (a). Transmission gate circuit setup digital source input. (b). Timing analysis results.

An interesting subject in the literature about inverters is their driving capability in terms of loading
capacitances. Figure 12(a) shows a circuit setup for the analysis of this effect. Notice the capacitance CL at the
output of the inverter. TINA, through the menu Analysis > Select Controlling Object gives the user the ability to
select the capacitance by clicking on it and setting parameter-stepping on the value of the capacitance. Figure
13(a) shows the initial dialog window where, after pressing the “Select” button the parameter-stepping options
window is enabled, as in Fig. 13(b). If this selection is no longer required the user has to repeat the process and
then select the “Remove” button (Fig. 13(b)). Here the controlling object is the capacitor CL, and the stepping is
done on the value of the capacitance starting at 1nF, ending at 2nF, with only these two values (Number of cases
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=2). Figure 12(b) shows the result of the timing analysis. It is seen how increasing capacitance leads to longer

charging time and thus increases the signal propagation time.
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Fig. 12. (a). CMOS inverter charging an output capacitance. (b). Timing analysis results.
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Fig. 13. (a). Selecting control object. (b). Setting control object selection.

V.

Ring Oscillator

Figure 14 shows the circuit schematic of 5 successive CMOS inverters. Such a circuit is known in
literature as a ring oscillator because it produces voltage oscillations in the output node Out, due to the feedback
connection. Figure 15 shows the timing analysis for the first 4ns where the onset of oscillations is captured.
Using the ‘@’ and ‘b’ cursors in the graph window, TINA measures the period of oscillations (353.7ps), so the
inverse is the corresponding oscillation frequency. This simple arithmetic calculation can be done in TINA’s
interpreter as seen in Fig 16, resulting in a frequency of approximately 2.8GHz. Interpreter can be used also for
advanced computing if required, as it supports several mathematical functions and programming constructs.
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Fig. 14. Ring oscillator with five inverters.
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V.  2-Input Universal Cmos Gates
The next steps in the design of gates, are the simple two-input universal gates of NAND and NOR, and
their corresponding inverted versions of AND and OR respectively. Figure 17(a) shows the CMOS two-input
NAND and AND gate and Fig.17(b) the timing analysis that verifies the gate’s behavior. Figure 18(a) shows the
CMOS two-input NOR and OR gate and Fig. 18(b) the timing analysis that verifies the gate’s behavior.
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Fig. 17. (a). CMOS NAND and AND two-input
gate. (b). Timing analysis graph.
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Cmos Xor Gate

The XOR gate is not a universal one, but is used here in order to present the concept of hierarchical
design process and the use of block-design units with TINA. Figure 19 shows the CMOS two input XOR gate
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structure. The circuit implements in CMOS logic function A’B + AB’ (A’ = not(A) and B’=not(B)) which is the
definition of XOR, using 2 NOT (inverters), 2 AND, 1 OR CMOS gates, a total of 22 transistors.
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Fig. 19. CMOS XOR two input gate. 22 transistor implementation.

Figure 20 verifies with timing analysis the correct function of the XOR gate. It is advisable, when
realizing complex functions using the CMQOS principles, to manipulate the circuit structure representation in
order to hide a lot of the details and present the overall Boolean character of the circuit. This is achieved using
the block-diagram technique.
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Fig. 20. Timing analysis graph of CMOS XOR two- Fig. 21. Insert block dialog window. Input — output
input gate. pins and block name are imported directly. Several

other editing tools exist and made accessible after
OK button is pressed.

Invoking from the menu the Insert > Block, the dialog window of Fig. 21 is enabled. The principle is
simple: The user enters a name for the block and assign names for the inputs and outputs. In this case a NOT
gate is to be created. Once the block diagram is created, with right-clicking on it, and pressing “Enter Macro”,
the user is “directed” in the “internal structure” of the block, where can place the various circuit components for
the corresponding block function.
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Fig. 22. Block diagram and internal block structure for (a). NOT gate, (b). NAND2 gate, (c). NOR2 gate. Macro
pins connect the internal structure of the block to the external connections in the overall circuit.

Figure 22 shows examples of the block icon and the corresponding internal structure of the NOT,
NAND, and NOR CMOS gates. Using such block elements (by copy and paste as many times as needed), the
XOR gate is redesigned as seen in Fig. 23. This circuit performs the same function as the one of Fig. 19, but it is
easier to grasp the Boolean function it realizes. Even this last circuit could be incorporated within a block named
XOR with two inputs and one output (Fig. 24), hiding completely the internal workings and leaving only the
function name to be seen. Such hierarchical design leads to circuits that are easier to understand and maintain or

update.
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Fig. 23. CMOS XOR2 gate with hierarchical design using block diagrams in order to make the circuit structure
easier to grasp.
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Fig. 24. Maximum information hiding in the case of XOR2 (blocks within block).

VII.  Conclusion
In the current article an educational review of CMOS design principles was presented using the TINA-

Pro software suite. Using nmos and pmos device BSIM3 SPICE files, changing the input file parameters and
rerunning the simulations gives the ability to compare between different technology implementations and
quantify predictions. Several important details in aiding design, were pointed and various examples were
presented featuring various analysis types. The presented material is suitable for fast introducing electrical and
electronic engineering students to the CMOS gate design of basic digital gates.
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