Abstract: In Finsler space we see special 𝛼,𝛽 −metrics such as Randers metric, Kropina metric and Matsumoto metric.,etc. Locally dually flat Finsler metrics arise from Information Geometry. Such metrics have special geometric properties and will play an important role in Finsler geometry. In this paper, we are going to study class of locally dually flat Finsler metrics which are defined as the sum of a Riemannian metric and 1−𝑓𝑜𝑟𝑚. In this paper, we study the special 𝛼,𝛽 −𝑚𝑒𝑡𝑟𝑖𝑐 𝐿 satisfying
[1] Akbar-Zadeh, Sur les expaces de Finsler A courbures sectionelles constantes, Acad. Roy. Belg. Bull.cl.Sci., 74(1988), 271-322. [2] S. Bacso, On a Weakly Berwald Finsler Space of Kropina Type, Mathematica Pannonica., 13 (2002),91-95. [3] S. Bacso, X. Cheng and Z. Shen, Curvature Properties of (α, β)-metrics, Adv. Stud. Pure Math. Soc.,Japan (2007). [4] Chern S.S and Z.Shen, Riemann-Finsler Geometry, World Scientific Publishing Co. Pte. Ltd., Hacken-sack, NJ, 2005. [5] X. Cheng and Z. Shen, A Class of Finsler metrics with isotropic S-curvature, Israel J. Math., 169(2009), 317-340. [6] X. Cheng and Z.Shen, A class of Einstein (α, β)-metrics, Israel J.Math., (2012), 1-29. [7] X.Mo, On the non-Riemannian quantity H of a Finsler metric, J. Differential Geom. Appl., 27 (2009),7-14. [8] B.Nafaji, Z.Shen and A. Tayebi, Finsler metircs of scalar flag curvature with special non-Riemannian curvature properties , J.Geom. Dedicata., 131 (2008), 87-97.